scholarly journals Development of attitude control system for hybrid airship vehicle

2018 ◽  
Vol 7 (4.13) ◽  
pp. 99
Author(s):  
Azizi Malek ◽  
M F Sedan ◽  
A S M Harithuddin

This paper documents and presents the development of attitude control system of Hybrid Airship Unmanned Aerial Vehicle (HAU) that should be able to change its attitude condition based on the response processed from the provided input. This is accomplished by data acquisition method that retrieves data from a flight controller and processes it into the control system without looking in deep on the mathematical model of the airship. Besides that, PID controller is used in order to create a good stable response for the hybrid airship. A working hybrid airship prototype was successfully developed and built, which is five meters in length and has four propellers that is symmetrically distanced to each other. A quadcopter attitude control mechanism is adopted into the hybrid airship to allow for good hovering capability and direct pure attitude control. Outdoor flight tests have been conducted to prove its stability in responding to attitude input given to the hybrid airship attitude controller. A data monitoring software is also written to make the data observation on the behaviour of the hybrid airship response to be easier and understandable. Result demonstrates that the hybrid airship does response to pitch, roll and yaw input from the operator, albeit the lack response stability and speed which can be improved in conservative continuation of research on the airship attitude control system.  

Author(s):  
G Bressan ◽  
A Russo ◽  
D Invernizzi ◽  
M Giurato ◽  
S Panza ◽  
...  

In this paper, the adaptive augmentation of the attitude control system for a multirotor unmanned aerial vehicle is considered. The proposed approach allows to combine a baseline controller with an adaptive one and to disable or enable the adaptive controller when needed, in order to take the advantages of both the controllers. To improve transient performance with respect to the standard model reference adaptive controller, an observed-based approach is exploited. The adaptation law is based on the error between the output of an observer of the nominal closed-loop dynamics and the actual output of the system with uncertainties. Experimental results obtained by testing the proposed approach on a quadrotor unmanned aerial vehicle are presented to compare the performance, in terms of disturbance rejection, with respect to the baseline controller and to a [Formula: see text] adaptive augmentation scheme.


2014 ◽  
Vol 629 ◽  
pp. 310-317 ◽  
Author(s):  
Samira Eshghi ◽  
Renuganth Varatharajoo

Combined Energy and Attitude Control System (CEACS) is an optimization approach that combines the energy storage system and the attitude control system. With a double counter rotating flywheel simultaneously serving as energy storage device and as attitude control actuator, CEACS requires an accurate control strategy to obtain the mission requirements. In addition, it is important to design the control law to be invariant to uncertainties and disturbances, and guarantee robustness as CEACS inherits these in-orbit uncertainties. This paper presents a nonlinear control employing sliding mode to enhance the CEACS attitude control capability. The mathematical model for the conventional and boundary layer sliding mode controls are developed herein for CEACS. The controller provides enhancement in pointing accuracies, reasonable transient responses and a robustness against uncertainties and in-orbit disturbances.


Author(s):  
Yan Zhou ◽  
Huiying Liu ◽  
Huijuan Guo ◽  
Jing Li

In this article, a L1 neural network adaptive fault-tolerant controller is exploited for an unmanned aerial vehicle attitude control system in presence of nonlinear uncertainties, such as system uncertainties, external disturbances, and actuator faults. A nonlinear dynamic inversion controller with sliding mode control law is designed as the outer-loop controller to track the attitude angles quickly and accurately which reduces dependence on model accuracy. A L1 neural network adaptive controller of the inner loop is introduced to compensate the nonlinear uncertainties and have a good attitude tracking. The radial basis function neural network technique is introduced to approximate a lumped nonlinear uncertainty and guarantee the stability and transient performance of the closed-loop system, instead of converting it to a half-time linear system by the parametric linearization method. Simulation results demonstrate the effectiveness of the proposed controller.


2013 ◽  
Vol 760-762 ◽  
pp. 1216-1220 ◽  
Author(s):  
Peng Fei Guo ◽  
Liang Yu Zhao

An attitude control system of a spinning spacecraft with internal moving mass is presented in this paper. This system consists of a rigid body and two internal radial moving masses. The mathematical model, including attitude kinematics and nonlinear dynamics equations, is established based on Newtonian mechanics. The control law is designed based on the linear-quadratic-regulator (LQR) theory. The performance of the controller is demonstrated in numerical simulation, and the response shows that the attitude control system is stable and effective.


2014 ◽  
Vol 52 (3) ◽  
pp. 205-215
Author(s):  
D. S. Ivanov ◽  
N. A. Ivlev ◽  
S. O. Karpenko ◽  
M. Yu. Ovchinnikov ◽  
D. S. Roldugin ◽  
...  

2015 ◽  
Vol 798 ◽  
pp. 256-260 ◽  
Author(s):  
Hidehiko Paku ◽  
Kenji Uchiyama

A reaction wheel is generally capable of providing single axial torque. Three separated devices were indispensable for controlling three-axis attitude of a satellite. The proposed system, which is called spherical reaction wheel, enables three-dimensional rotation of a spherical rotor and provides three-dimensional torque so that mounting only one proposed device can be sufficient to control three-axis attitude of a satellite. Furthermore, the system reduces size and weight of an attitude control system in comparison with the conventional system. To confirm the validity of the proposed device as an attitude control system, we conduct experiments concerning attitude control of a small satellite model with PID controller.


Sign in / Sign up

Export Citation Format

Share Document