Mhd And Radiation Effect On Heat Transfer In A Non-Newtonian Maxwell Fluid Over An Unsteady Stretching Sheet With Heat Source/Sink

Author(s):  
S.Vijaya Lakshmi ◽  
T.Amaranatha Reddy ◽  
M. Suryanarayana Reddy
2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Kai-Long Hsiao

A magnetic hydrodynamic (MHD) of an incompressible viscoelastic fluid over a stretching sheet with electric and magnetic dissipation and nonuniform heat source/sink has been studied. The buoyant effect and the electric numberE1couple with magnetic parameterMto represent the dominance of the electric and magnetic effects, and adding the specific item of nonuniform heat source/sink is presented in governing equations which are the main contribution of this study. The similarity transformation, the finite-difference method, Newton method, and Gauss elimination method have been used to analyze the present problem. The numerical solutions of the flow velocity distributions, temperature profiles, and the important wall unknown values off''(0)andθ'(0)have been carried out. The parameter Pr,E1, orEccan increase the heat transfer effects, but the parameterMorA*may decrease the heat transfer effects.


CFD letters ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 121-130
Author(s):  
Nur Faizzati Ahmad Faizal ◽  
Norihan Md Ariffin ◽  
Yong Faezah Rahim ◽  
Mohd Ezad Hafidz Hafidzuddin ◽  
Nadihah Wahi

In the presence of slips, non-uniform heat source/sink, thermal radiation and magnetohydrodynamic (MHD), micropolar hybrid nanofluid and heat transfer over a stretching sheet has been studied. The problem is modelled as a mathematical formulation that involves a system of the partial differential equation. The similarity approach is adopted, and self-similar ordinary differential equations are obtained and then those are solved numerically using the shooting method. The flow field is affected by the presence of physical parameters such as micropolar parameter, magnetic field parameter, suction parameter and slip parameter whereas the temperature field is affected by thermal radiation parameter, space-dependent parameter, temperature-dependent internal heat generation/absorption parameter, Prantl number and Biot number. The skin friction coefficient, couple stress and local Nusselt number are tabulated and analysed. The effects of the governing parameters on the velocity profiles, angular velocity profiles and temperature profiles are illustrated graphically. The results of velocity profiles, angular velocity profiles and temperature profiles are also obtained for several values of each parameters involved.


2018 ◽  
Vol 387 ◽  
pp. 145-156 ◽  
Author(s):  
Sure Geethan Kumar ◽  
S. Vijaya Kumar Varma ◽  
Putta Durga Prasad ◽  
Chakravarthula S.K. Raju ◽  
Oluwole Daniel Makinde ◽  
...  

In this study, we numerically investigate the hydromagnetic three dimensional flow of a radiating Maxwell fluid over a stretching sheet embedded in a porous medium with heat source/sink, first ordered chemical reaction and Soret effect. The corresponding boundary layer equations are reduced into set of non-linear ordinary differential equations by means of similarity transformations. The resulting coupled non-linear equations are solved numerically by employing boundary value problem default solver in MATLAB bvp4c package. The obtained results are presented and discussed through graphs and tables. It is noticed that the Deborah number reduces the velocity fields and improves the temperature and concentration fields. Nomenclature


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hamza Berrehal ◽  
G. Sowmya ◽  
Oluwole Daniel Makinde

Purpose In heat transfer, fluids and nanoparticles can provide new innovative technologies with potential to adapt the heat transfer fluid’s thermal properties through control over particle size, shape and others. This paper aims to examine the effects of spherical and non-spherical (cylinder, disk, platelets, etc.) shapes of silver (Ag) nanoparticles on heat transfer enhancement and inherent irreversibility in hydromagnetic water base nanoliquid flow over a convectively heated stretching sheet with heat generation/absorption. Design/methodology/approach Applying suitable similarity constraints, the model partial differential equations are transformed into a set of nonlinear ordinary differential equations. Solutions are obtained analytically via optimal homotopy asymptotic method (OHAM) and numerically via shooting technique coupled with the Runge-Kutta-Fehlberg (RK-F) method. Findings The impact of Ag nanoparticle’s shape along with other germane factors, such as Biot number, magnetic field, solid volume fraction and heat source/sink on velocity and thermal profiles, Nusselt number, skin friction coefficient, heat transfer enhancement, rate of entropy generation and irreversibility ratio, are scrutinized via graphical simulations and discussed. This study revealed that cylindrical shape Ag nanoparticles generate high entropy and fluid friction irreversibility, whereas disk shape Ag nanoparticles exhibit high transfer enhancement rate. Moreover, a boost in magnetic field intensity, volume-fraction parameter and Biot number enhances the thermal boundary layer thickness. Originality/value The main objective of this work is to examine the different Ag nanoparticles shape effects on the heat transfer enhancement and inherent irreversibility owing to hydromagnetic nanoliquid flow past a convectively heated stretching sheet with heat source/sink, which has not been yet studied. It is hope that this study will bridge the gap in the present literature and serve as impetus to scholars, engineers and industries for more exploration in this direction. The intrinsic nonlinearity of the model equations precludes its exact solution; hence, OHAM and shooting technique coupled with the RK-F method have been used to numerically tackle the problem. Pertinent results are discussed quantitatively and displayed graphically and in tabular form.


Sign in / Sign up

Export Citation Format

Share Document