scholarly journals The effects of intensive gait training with body weight support treadmill training on gait and balance in stroke disability patients: a randomized controlled trial

2013 ◽  
Vol 2 (2) ◽  
pp. 104-110 ◽  
Author(s):  
Byung Joon Lee ◽  
Hwang Jae Lee ◽  
Wan Hee Lee
2018 ◽  
Vol 46 (7) ◽  
pp. 1650-1660 ◽  
Author(s):  
Audrey R.C. Elias ◽  
Kari J. Harris ◽  
Paul C. LaStayo ◽  
Ryan L. Mizner

Background: Limited knee flexion and increased muscle co-contraction during jump landing are believed to diminish outcomes after anterior cruciate ligament (ACL) reconstruction. The efficacy of jump training to improve patients’ mechanical and neuromuscular deficits is understudied. Hypothesis: Jump training will improve functional, mechanical, and neuromuscular outcomes and higher repetition training augmented by body weight support will result in better retention of gains. Study Design: Randomized controlled trial; Level of evidence, 1. Methods: Thirty athletes (18 months after surgery) were screened, and 19 with mechanical deficits and limited clinical outcomes were enrolled in the trial. Testing included the International Knee Documentation Committee (IKDC) questionnaire, leg landing mechanics via motion analysis, knee joint effusion using a stroke test, and a surface electromyography–generated co-contraction index during a single-legged landing. Participants were randomly assigned to 1 of 2 groups: jump training with normal body weight (JTBW) and high-repetition jump training with body weight support (JTBWS). Knee effusion grading throughout training was used to assess joint tolerance. Changes in outcomes over time were analyzed with mixed-effects modeling. Immediate outcomes were compared with retention testing at 8 weeks after training by use of 2-way analyses of variance with effects of time and group. Results: Significant effects of time were found during the training phase for all outcome measures, but no effects of group or sex were found. IKDC score (pooled; mean ± SD) increased from 76 ± 12 to 87 ± 8 ( P < .001). Knee flexion during single-legged landing increased from 57° ± 11° to 73° ± 9° ( P < .001). Average co-contraction index decreased from 37 ± 15 to 19 ± 6 ( P < .001). All measures were retained over the retention period in both groups. The relative risk of knee effusion of the JTBW group versus the JTBWS group was 4.2 (95% CI, 2.25-7.71; P < .001). Conclusion: Jump training mitigated some risk factors for second injury and osteoarthritis in patients after ACL reconstruction. Training made lasting improvements in physical function measures as well as mechanical and neuromuscular coordination deficits. Higher repetitions used with body weight support did not improve retention but substantially reduced risk for effusion. Clinical Relevance: Jump training is an efficacious intervention for athletes with poor outcomes after ACL reconstruction, and training with body weight support lessens the risk for excessive joint stress during practice. Registration: NCT02148172 ( ClinicalTrials.gov identifier)


2018 ◽  
Vol 31 (0) ◽  
Author(s):  
Jéssica Saccol Borin ◽  
Tânia Valdameri Capelari ◽  
Melissa Grigol Goldhardt ◽  
Márcia Cristina Issa ◽  
Diego Antônio Pereira Bica dos Santos ◽  
...  

Abstract Introduction: The locomotor training with body weight support has been proposed as an alternative for the rehabilitation of people with spinal cord injury, in order to develop most of the residual potential of the body. Objective: To compare the levels of muscle activation of the main muscle involved in gait during body weight-supported treadmill training and body weight-supported overground training in incomplete spinal cord injured patients. Methods: It was a prospective cross-sectional study, in which 11 incomplete injured patients were submitted to two modalities of gait with body weight support, the first one on the treadmill (two different speeds: 1 and 4km/h), and the second one with the walker on fixed floor. The electromyographical acquisition was done in the rectus femoris (RF), vastus medialis (VM), vastus lateralis (VL) and gluteus maximus (GM). Results: There was a greater muscle activation of all muscles analyzed in the treadmill training as compared to the over groundtraining, both at 4 km/h (RF: p=0.00), (VM: p=0.00), (VL: p=0.00) e (GM: p=0.00) and at 1km/h (RF: p=0.00), (VM: p=0.00), (VL: p=0.00) e (GM: p=0.00). When comparing the two modalities of treadmill training, at 4 and 1km/h, there was no statically significant difference between them (RF: p=0.36), (VM: p=1.00), (VL: p=1.00) e (GM: p=0.16). Conclusion: The gait training with body weight support is more effective in activating the muscles involved in the gait training on treadmill compared to overground training in patients with incomplete spinal cord injury.


2014 ◽  
Vol 21 (6) ◽  
pp. 462-476 ◽  
Author(s):  
Addie Middleton ◽  
Angela Merlo-Rains ◽  
Denise M. Peters ◽  
Jennifaye V. Greene ◽  
Erika L. Blanck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document