scholarly journals PID controller tuning using bacterial Quorum Sensing (QS)

Tecnura ◽  
2020 ◽  
Vol 24 (64) ◽  
pp. 13-22
Author(s):  
Fredy Hernán Martínez Sarmiento ◽  
Diego Mauricio Acero Soto

Objective: PID controllers are widely used to operate AC motors due to their simplicity and easy implementation. However, adjusting its parameters in search of an optimal scheme can be complex because it requires manual tuning by trial and error. This research aims to implement an optimized tuning scheme through a search based on the idealized behavior of a community of bacteria and its Quorum Sensing (QS). Methodology: A closed-loop system model with PID control considering disturbances is proposed in order to tune a disturbance-resistant controller. The response of the model is calculated using a search that mimics a simplified model of bacterial behavior. The scheme uses ITSE (Integral Time Squared Error) as the performance index. Results: The tuning resulting from the proposed scheme was evaluated by simulation and compared with tunings of the same model made by Root Locus and Genetic Algorithms (GA). The results showed a satisfactory response according the design criteria. Conclusions: Nowadays, PID controllers are still basic industrial control tools, particularly important in motor operation. The performance of these controls depends fundamentally on the design of their gain. In the case of complex plants, additional tools are required to facilitate PID tuning. We propose an intelligent and bio-inspired tuning scheme that demonstrates high performance in laboratory tests. Financing: University Francisco José de Caldas through the project 1-72-578-18.

2003 ◽  
Vol 16 (9) ◽  
pp. 827-834 ◽  
Author(s):  
Mengsheng Gao ◽  
Max Teplitski ◽  
Jayne B. Robinson ◽  
Wolfgang D. Bauer

Earlier work showed that higher plants produce unidentified compounds that specifically stimulate or inhibit quorum sensing (QS) regulated responses in bacteria. The ability of plants to produce substances that affect QS regulation may provide plants with important tools to manipulate gene expression and behavior in the bacteria they encounter. In order to examine the kinds of QS active substances produced by the model legume M. truncatula, young seedlings and seedling exudates were systematically extracted with various organic solvents, and the extracts were fractionated by reverse phase C18 high-performance liquid chromatography. M. truncatula appears to produce at least 15 to 20 separable substances capable of specifically stimulating or inhibiting responses in QS reporter bacteria, primarily substances that affect QS regulation dependent on N-acyl homoserine lactone (AHL) signals. The secretion of AHL QS mimic activities by germinating seeds and seedlings was found to change substantially with developmental age. The secretion of some mimic activities may be dependent upon prior exposure of the plants to bacteria.


Sign in / Sign up

Export Citation Format

Share Document