pid controller tuning
Recently Published Documents


TOTAL DOCUMENTS

337
(FIVE YEARS 57)

H-INDEX

32
(FIVE YEARS 1)

Author(s):  
Prof. Dong Hwa Kim ◽  

This paper deals with dynamic decoupling and its intelligent PID control method of multivariable qua-drone. Up to this time, many sophisticated intelligent algorithms and control methods for drone systems have been mentioned. However, almost many cases have been focusing on single loop control methods and general multivariable systems. Therefore, we cannot guarantee its stability and optimal response by PID control used in multivariable qua-drone. Herein, this paper suggests a novel control method for PID control for multivariable qua-drone. As first step, this paper decouples dynamic of multivariable qua-drone using diagonal method of system matrix and then applies intelligent method PSO and GA to single loop obtained by decoupling method to obtain optimal response.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5945
Author(s):  
Milan Hofreiter

The aim of this study was to present a relay shifting method for relay feedback identification of dynamical systems suitable for PID controller tuning. The proposed technique uses a biased relay to determine frequency response points from a single experiment without any assumptions about a model transfer function. The method is applicable for open-loop stable, unstable, and integration processes, even with a delay, and regardless of whether they are oscillating or non-oscillating. The core of this technique was formed by the so-called relay shifting filter. In this study, the method was applied to a parameter estimation of a second-order time-delayed (SOTD) model that can describe, with acceptable accuracy, the dynamics of most processes (even with a transport delay) near the operating point. Simultaneously, a parameter setting for the PID controller was derived based on the model parameters. The applicability of the proposed method was demonstrated on various simulated processes and tested on real laboratory apparatuses.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6157
Author(s):  
Mikulas Huba ◽  
Stefan Chamraz ◽  
Pavol Bistak ◽  
Damir Vrancic

This paper deals with the design of a DC motor speed control implemented by an embedded controller. The design is simple and brings some important changes to the traditional Ziegler–Nichols tuning. The design also includes a novel anti-windup implementation of the controller and an integrated noise-reduction filter design. The proposed tuning method considers all important aspects of the control, such as pre-processing of the measured signals and filtering (to attenuate the measurement noise), time delays of the process, modeling and identification of the process, and constraints on the control signal. Three important aspects of designing PI and PID controllers for processes with noisy output on Arduino-type embedded computers are considered. First, it deals with the integrated design of the input filter and the controller parameters, since both are interdependent. Secondly, the method of setting the controllers from step responses by Ziegler and Nichols is modified for the case of digital signal processing (without drawing the tangent), while it recommends the suitability of its modification in terms of the use of both integral and static models. Third, the most suitable anti-windup solution for the given controller structure is proposed. In summary, the paper shows that an appropriate design of the embedded controller can achieve excellent closed-loop performance even in a noisy process environment with limited control signals.


2021 ◽  
Author(s):  
Abdullah Turan

Abstract In this paper, a simple design method is presented to adjust the parameters of a proportional-integral derivative PID controller to be applied to different systems. In this method, PID controller is designed based on setting the optimal proportional gain according to the desired performance (settling time, overshoot). Determining the other parameters of the PID controller by adjusting the optimum ratio gain (k p ) in a stable loop that minimizes the settling time (t s ) and the error rate of the overshoot (M p ) constitutes the basis of the method. The Routh Rurwitz criterion is used to guarantee stability. The performance of the controller designed with the proposed method has been evaluated on three different transfer functions. With this method, the PID controller works successfully without destroying parameters and without complex mathematical formulation. It has been observed that the proposed method provides better closed loop performance compared to the methods reported recently.


2021 ◽  
Vol 11 (14) ◽  
pp. 6492
Author(s):  
Alaa Sheta ◽  
Malik Braik ◽  
Dheeraj Reddy Maddi ◽  
Ahmed Mahdy ◽  
Sultan Aljahdali ◽  
...  

Quadrotor UAVs are one of the most preferred types of small unmanned aerial vehicles, due to their modest mechanical structure and propulsion precept. However, the complex non-linear dynamic behavior of the Proportional Integral Derivative (PID) controller in these vehicles requires advanced stabilizing control of their movement. Additionally, locating the appropriate gain for a model-based controller is relatively complex and demands a significant amount of time, as it relies on external perturbations and the dynamic modeling of plants. Therefore, developing a method for the tuning of quadcopter PID parameters may save effort and time, and better control performance can be realized. Traditional methods, such as Ziegler–Nichols (ZN), for tuning quadcopter PID do not provide optimal control and might leave the system with potential instability and cause significant damage. One possible approach that alleviates the tough task of nonlinear control design is the use of meta-heuristics that permit appropriate control actions. This study presents PID controller tuning using meta-heuristic algorithms, such as Genetic Algorithms (GAs), the Crow Search Algorithm (CSA) and Particle Swarm Optimization (PSO) to stabilize quadcopter movements. These meta-heuristics were used to control the position and orientation of a PID controller based on a fitness function proposed to reduce overshooting by predicting future paths. The obtained results confirmed the efficacy of the proposed controller in felicitously and reliably controlling the flight of a quadcopter based on GA, CSA and PSO. Finally, the simulation results related to quadcopter movement control using PSO presented impressive control results, compared to GA and CSA.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1340
Author(s):  
Damir Vrančić ◽  
Mikuláš Huba

The paper presents a tuning method for PID controllers with higher-order derivatives and higher-order controller filters (HO-PID), where the controller and filter orders can be arbitrarily chosen by the user. The controller and filter parameters are tuned according to the magnitude optimum criteria and the specified noise gain of the controller. The advantages of the proposed approach are twofold. First, all parameters can be obtained from the process transfer function or from the measured input and output time responses of the process as the steady-state changes. Second, the a priori defined controller noise gain limits the amount of HO-PID output noise. Therefore, the method can be successfully applied in practice. The work shows that the HO-PID controllers can significantly improve the control performance of various process models compared to the standard PID controllers. Of course, the increased efficiency is limited by the selected noise gain. The proposed tuning method is illustrated on several process models and compared with two other tuning methods for higher-order controllers.


Sign in / Sign up

Export Citation Format

Share Document