scholarly journals Solvability and Numerical Solutions of Systems of Nonlinear Volterra Integral Equations of the First Kind with Piecewise Continuous Kernels

Author(s):  
I.R. Muftahov ◽  
◽  
D.N. Sidorov ◽  
2020 ◽  
Vol 28 (3) ◽  
pp. 209-216
Author(s):  
S. Singh ◽  
S. Saha Ray

AbstractIn this article, hybrid Legendre block-pulse functions are implemented in determining the approximate solutions for multi-dimensional stochastic Itô–Volterra integral equations. The block-pulse function and the proposed scheme are used for deriving a methodology to obtain the stochastic operational matrix. Error and convergence analysis of the scheme is discussed. A brief discussion including numerical examples has been provided to justify the efficiency of the mentioned method.


Author(s):  
S. Singh ◽  
S. Saha Ray

In this paper, the numerical solutions of multi-dimensional stochastic Itô–Volterra integral equations have been obtained by second kind Chebyshev wavelets. The second kind Chebyshev wavelets are orthonormal and have compact support on [Formula: see text]. The block pulse functions and their relations to second kind Chebyshev wavelets are employed to derive a general procedure for forming stochastic operational matrix of second kind Chebyshev wavelets. The system of integral equations has been reduced to a system of nonlinear algebraic equations and solved for obtaining the numerical solutions. Convergence and error analysis of the proposed method are also discussed. Furthermore, some examples have been discussed to establish the accuracy and efficiency of the proposed scheme.


2020 ◽  
Vol 12 (3) ◽  
pp. 409-415
Author(s):  
Majid Erfanian ◽  
Hamed Zeidabadi ◽  
Rohollah Mehri

In this work, two-dimensional rational Haar wavelet method has been used to solve the twodimensional Volterra integral equations. By using fixed point Banach theorem we achieved the order of convergence and the rate of convergence is O(n(2q)n). Numerical solutions of three examples are presented by applying a simple and efficient computational algorithm.


Sign in / Sign up

Export Citation Format

Share Document