Structural Studies in Anion Exchange Membrane Prepared by Vinyl Benzyl Chloride and its Electrochemical Properties

2015 ◽  
Vol 25 (4) ◽  
pp. 310-319
Author(s):  
JeeHye Song ◽  
◽  
BongKuk Seo ◽  
YongJin Choi
2020 ◽  
Vol 157 ◽  
pp. 71-82 ◽  
Author(s):  
R.E. Coppola ◽  
D. Herranz ◽  
R. Escudero-Cid ◽  
N. Ming ◽  
N.B. D’Accorso ◽  
...  

Membranes ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 349
Author(s):  
Daniel Herranz ◽  
Roxana E. Coppola ◽  
Ricardo Escudero-Cid ◽  
Kerly Ochoa-Romero ◽  
Norma B. D’Accorso ◽  
...  

Crosslinked membranes have been synthesized by a casting process using polybenzimidazole (PBI) and poly(vinyl benzyl chloride) (PVBC). The membranes were quaternized with 1,4-diazabicyclo[2.2.2]octane (DABCO) to obtain fixed positive quaternary ammonium groups. XPS analysis has showed insights into the changes from crosslinked to quaternized membranes, demonstrating that the crosslinking reaction and the incorporation of DABCO have occurred, while the 13C-NMR corroborates the reaction of DABCO with PVBC only by one nitrogen atom. Mechanical properties were evaluated, obtaining maximum stress values around 72 MPa and 40 MPa for crosslinked and quaternized membranes, respectively. Resistance to oxidative media was also satisfactory and the membranes were evaluated in single direct ethanol fuel cell. PBI-c-PVBC/OH 1:2 membrane obtained 66 mW cm−2 peak power density, 25% higher than commercial PBI membranes, using 0.5 bar backpressure of pure O2 in the cathode and 1 mL min−1 KOH 2M EtOH 2 M aqueous solution in the anode. When the pressure was increased, the best performance was obtained by the same membrane, reaching 70 mW cm−2 peak power density at 2 bar O2 backpressure. Based on the characterization and single cell performance, PBI-c-PVBC/OH membranes are considered promising candidates as anion exchange electrolytes for direct ethanol fuel cells.


Author(s):  
Vu Thi Hong Nhung ◽  
Huynh Thi Lan Phuong ◽  
Nguyen Huu Tho ◽  
Nguyen Thi Cam Ha ◽  
Nguyen Van Thuc

 In this study, poly(styrene-co-vinyl benzyl trimethyl ammonium chloride) with different styrene to vinyl benzyl chloride ratio (3:1, 1:1, 1:2) have been synthesized. The formation ofproducts was confirmed by Fourier transform infrared spectrophotometry (FTIR) and nuclear magnetic resonance spectra (1H NMR). Then, anion exchange membranes were prepared by combination of poly(styrene-co-vinyl benzyl trimethyl ammonium hydroxide) and poly (vinyl alcohol) The obtained membranes were evaluated for their own conductivity, anion exchange capacity, and thermal decomposition. The results showed that the anion exchange membrane produced from copolymer with styrene to vinyl benzyl chloride ratio 1: 2 exhibited good hydroxide conductivity of 7 mS/cm, ion exchange capacity was 0.65mmol/g and stability to 200oC. Keywords Membrane, poly(vinyl alcohol), copolymer, conductivity, fuel cell. References [1] D. J. Kim, C. H. Park, S. Y. Nam, Characterization of a soluble poly(ether ether ketone) anion exchange membrane for fuel cell application, Int. J. Hydrogen Energy 41 (2016) 7649-7658. https:// doi.org/10.1016/j. ijhydene.2015.12.088[2] J. Fu, J. Qiao, H. Lv, J. Ma, X.-Z. Yuan, H. Wang, Alkali doped poly(vinyl alcohol) (PVA) for anion-exchange membrane fuel cells - Ionic conductivity, chemical stability and FT-IR characterizations, Alkaline Electrochem. Power Sources 25 (2010) 15–23. http://doi.rog/10.1149/ 1.3315169[3] D. L. Zugic, I. M. Perovic, V. M. Nikolic, S. L. Maslovara, M. P. Marceta Kaninski, Enhanced Performance of the Solid Alkaline Fuel Cell Using PVA-KOH Membrane, Int. J. Electrochem. Sci. 8 (2013) 949-957. [4] Jikihara, R. Ohashi, Y. Kakihana, M. Higa, and K. Kobayashi, Electrodialytic transport properties of anion-exchange membranes prepared from poly(vinyl alcohol) and poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride), Membranes (Basel) 3 (2013) 1-15. http: //doi.rog/10.3390/membranes3010001[5] S. Vengatesan, S. Santhi, S. Jeevanantham, G. Sozhan, Quaternized poly(styrene-co-vynylbenzyl choloride) anion exchange membranes for alkaline water electrolysers, Journal of Power Sources 84 (2015) 361-368. https://doi.org/10.1016/j.jpowsour. 2015.02.118[6] L. E. Shmukler, N. V. Thuc, and L. P. Safonova, Conductivity and thermal stability of proton-conducting electrolytes at confined geometry of polymeric gel, Ionics 19 (2013) 701-707. https:// doi.org/10.1007/s11581-012-0800-2[7] D//A. Lewandowski, K. Skorupska, J. Malinska, Novel poly(vinyl alcohol)–KOH–H2O alkaline polymer electrolyte, Solid State Ionics 133 (2000) 265-271. https://doi.org/10.1016/S0167-2738(00) 00733-5 [8] Jun F, Y. Wu, Y. Zhang, M. Lyu, J. Zhao, Novel anion exchange membranes based on pyridinium groups and fluoroacrylate for alkaline anion exchange membrane fuel cells, Int. J. Hydrogen Energy 40 (2015) 12392-12399. https://doi.org/10. 1016/j.ijhydene.2015.07.074[9] Géraldine M, M. Wessling, K. Nijmeijer Anion exchange membranes for alkaline fuel cells: A review, Journal of Membrane Science, 377(2011) 1-35. https://doi.org/10.1016/j.memsci.2011.04.043.    


2012 ◽  
Vol 51 (24) ◽  
pp. 1751-1760 ◽  
Author(s):  
Tsung-Han Tsai ◽  
Ashley M. Maes ◽  
Melissa A. Vandiver ◽  
Craig Versek ◽  
Sönke Seifert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document