scholarly journals Parameter Optimization of Wire EDM for H-13 Tool Steel

Author(s):  
Satish Giduturi ◽  
Ashok Kumar

Wire Electrical Discharge Machining (WEDM) is a widely accepted non-traditional material removal process used to manufacture components with intricate shapes and profiles. It is considered as a unique adaptation of the conventional EDM process, which uses an electrode to initialize the sparking process. H13 Hot Work Tool Steel has high hot tensile strength, hot wear-resistance and toughness. Good thermal conductivity and insensitiveness to hot cracking, making it suitable not only for hot die applications but also plastic moulds. In this study, it is found that most predominant factors for the maximum material removal rate which is 22.21 mm3/min are current which was found to be 200A and Pulse ON Time 125 µs, however rest four factors (voltage 20V, pulse off time 40µs, wire tension 8N and wire feed 7mm/min) has less impact as compare to the predominant factors. The most predominant factors for Minimum surface roughness which is 0.89µm are wire tension 10N, pulse on time 115µs and servo voltage 60V. However, rest three factors pulse off time 60 µs, peak current 140 A and wire feed 7mm/min has less impact as compare to the predominant factors.

2015 ◽  
Vol 14 (03) ◽  
pp. 189-202 ◽  
Author(s):  
V. Vikram Reddy ◽  
P. Madar Valli ◽  
A. Kumar ◽  
Ch. Sridhar Reddy

In the present work, an investigation has been made into the electrical discharge machining process during machining of precipitation hardening stainless steel PH17-4. Taguchi method is used to formulate the experimental layout, to analyze the effect of each process parameter on machining characteristics and to predict the optimal choice for each electrical discharge machining process parameters namely, peak current, pulse on time and pulse off time that give up optimal process performance characteristics such as material removal rate, surface roughness, tool wear rate and surface hardness. To identify the significance of parameters on measured response, the analysis of variance has been done. It is found that parameters peak current and pulse on time have the significant affect on material removal rate, surface roughness, tool wear rate and surface hardness. However, parameter pulse off time has significant affect on material removal rate. Confirmation tests are conducted at their respective optimum parametric settings to verify the predicted optimal values of performance characteristics.


2015 ◽  
Vol 766-767 ◽  
pp. 902-907
Author(s):  
Bibin K. Tharian ◽  
B. Kuriachen ◽  
Josephkunju Paul ◽  
Paul V. Elson

Wire electrical discharge machining is one of the important non-traditional machining processes for machining difficult to machine materials. It involves the removal of material by the discrete electric discharges produced between the inter electrode gap of continuously moving wire electrode and the work piece. The ability to produce intricate profiles on materials irrespective of the mechanical properties made this process to be widely used in industries. The present study investigates the relationship of various process parameters in WEDM of AISI 202 stainless steel with brass electrode.The experiments were planned according to Taguchi’s L18 orthogonal array and experimental models were developed. The important process parameters identified for the present study were pulse on time, peak current, pulse off time, wire feed, wire tension, dielectric flushing pressure, servo feed and gap voltage. The surface roughness of the machined surface was measured as the process performance measure. Analysis of variance test has also been carried out to check the adequacy of the developed models and to identify the level of significance of each process parameters. In addition to the developed models, ABC optimization has been performed to identify the optimum parameter combination for minimum surface roughness and the obtained optimal process parameters are peak current 11 A, pulse on time 100 μs, pulse off time 49 μs, wire feed 4 m/min, wire tension 10 N, flushing pressure 12 kg/cm2, servo feed 2100 mm/min and set gap voltage 30 V. Finally the results were verified with the experimental results and found that they are in good agreement.


2021 ◽  
Vol 41 (3) ◽  
Author(s):  
Ashish Goyal ◽  
Vyom Singh ◽  
Abhishek Patel

Gear fabrication in wire electrical discharge machining (WEDM) plays an important role in manufacturing industries. This paper describes the analysis and optimization of process parameters for the fabrication of spur gear on brass spur gear on brass workpiece (10cmx15cmx6mm) material by wire EDM process. The experiments were performed by using the design of experiment (DoE) approach and the material removal rate (MRR) was analyzed by response surface methodology technique. The effect of input parameters i.e. pulse on time, pulse off time and feed rate on MRR has been investigated. The surface geometry of the gears has been analysed by the Scanning Electron Microscopy (SEM). This study found that 0.4 μs for pulse on time, 60 μs for pulse-off time and 6 mm/min for feed rate provides improved material removal rate. The analysis of variance shows that pulse on time and feed rate are the significant parameters for the wire EDM process. The SEM image exhibits the capability of WEDM to machined miniature gear with a uniform distribution of regular-shaped craters and defect-free flank surface.


2019 ◽  
Vol 69 (1) ◽  
pp. 17-38 ◽  
Author(s):  
De Dwaipayan ◽  
Nandi Titas ◽  
Bandyopadhyay Asish

AbstractIn 21st century, it has been observed that Wire Cut Electrical Discharge Machining (WEDM) has evolved as one of the most important non-traditional machining process. The popularity and its success lies because of its uniqueness towards producing different components which are very difficult to machine like titanium, tungsten carbide, Inconel materials etc and provides a platform in producing intricate complex shape which in many cases become impossible to machine by traditional machining methods. Pure sintered titanium bears very high specific strength, abrasion and corrosion resistances and thus machining this type of materials by conventional techniques becomes very difficult though this material finds immense applications in bio-plant and aerospace components. In the present work, WEDM on pure sintered titanium is studied. The different input parameters of WEDM like, pulse on time, pulse off time, wire tension and wire feed have been varied to investigate the output response like MRR, Surface Roughness (Ra), Kerf Width and Over Cut. A response surface methodology (4 factors 3 level) design of experiment (DOE) has been applied in this context to examine the machining ability of pure sintered titanium and results are found to be satisfactory and verified by confirmatory test. The machining parameters like pulse on time, pulse off time, wire tension and wire feed shows immense effect on the output responses and present study provide an optimal conditions of these input parameters to get the best output responses through RSM


2015 ◽  
Vol 787 ◽  
pp. 366-370 ◽  
Author(s):  
Vaibhav Gaikwad ◽  
Vijaykumar S. Jatti ◽  
T.P. Singh

NiTi alloys possess superior material properties such as high specific strength, high corrosion resistance, high wear resistance and high anti-fatigue property. Due to these properties it is difficult to machine these alloys using conventional machining process. Nowadays non-conventional machining processes are widely used for machining such adavanced materials. Electrical Discharge machining (EDM) is one such non-conventional process, which can machine electrically conductive materials of any hardness values. Present study aims at drilling mesoscale 3 mm square holes on NiTi alloy by varying the electrical parameters namely, gap current, pulse on time and pulse off time. Additional, the present work includes finding out the effect of cryogenic treatment of NiTi work material on electrical discharge machining performance measures namely material removal rate (MRR) and tool wear rate (TWR). Based on experiments conducted, it can be concluded that with increase in current both material removal rate and tool wear rate increases. It is also noted that cryo-treatment of workpiece material improves MRR with respect to gap current. Similarly there is an increase in MRR with respect to pulse on time and pulse off time for cryo-treated workpiece material. There is a slight improvement of TWR with respect to gap current, pulse on time and pulse off time for cryo-treated workpiece material.


2014 ◽  
Vol 660 ◽  
pp. 43-47
Author(s):  
Amran Ali Mohd ◽  
Suraya Laily ◽  
Aisyah Fatin ◽  
Nur Izan Syahriah Hussein ◽  
Mohd Razali Muhamad ◽  
...  

This paper investigates the performance of brass electrode on the removal of aluminium alloys LM6 (Al-Sil2) in an electrical discharge machining (EDM) die-sinking. The machining parameters such as pulse-on time, pulse-off time and peak current were selected to find the responses on the material characteristics such as material removal rate (MRR), electrode wear rate (EWR) and surface roughness (Ra). Brass with diameter of 10mm was chosen as an electrode. Orthogonal array of Taguchi method was used to develop experimental matrix and to optimize the MRR, EWR and Ra. It is found that the current is the most significantly affected the MRR, EWR and Ra while pulse on time, pulse off time and voltage are less significant factor that affected the responses. Percentage optimum value of MRR increases to 3.99%, however EWR and Ra reduce to 3.10% and 2.48% respectively. Thus, it shows that brass having capability to cut aluminium alloys LM6.


2019 ◽  
Vol 28 (1) ◽  
pp. 39-61 ◽  
Author(s):  
Pawan Kumar ◽  
Meenu Gupta ◽  
Vineet Kumar

AbstractIncreasing demand of aerospace industry for more heat resistant and tough material have open up the possibility of the use of Inconel 825 for making of combustor casing and turbine blades. Because of its robust nature, Inconel 825 is a difficult-to-cut material with conventional methods. Wire-cut electrical discharge machining (WEDM), a non traditional method uses thermoelectric erosion principle to produce intricate shape and profiles of such difficult-to-cut material. In this study, various operating parameters of WEDM are optimized using desirability approach and microstructural behavior at optimum combinations was studied. Input parameters viz. pulse-on time, pulse-off time, peak current, spark gap voltage, wire tension, wire feed and performance has been measured in term of material removal rate, surface roughness and wire wear ratio. It has been observed that at 110 machine unit pulse-on time (Ton), 35 machine unit pulse-off time (Toff), 46 volt gap voltage (SV), 120 ampere peak current (IP), 11 machine unit wire tension (WT) and 5 m/min wire feed (WF), the values obtained for material removal rate (MRR), surface roughness (SR) and wire wear ratio (WWR) were 27.691mm2/min, 2.721 μmand 0.117 respectively. Scanning electron microscopy, energy dispersive spectrograph and X-ray diffraction analysis has also been carried out to study the surface characterization. Comparatively less numbers of cracks, pockmarks, craters, and pulled out material were found on work specimen surface and wire electrode surface under standardized conditions, thus maintaining the surface integrity of the machined surface.


Author(s):  
Kaushik Kumar ◽  
J. Paulo Davim

Electrical Discharge Machining (EDM) process is a widely used machining process in several fabrication, construction and repair work applications. Considering Pulse-On Time, Pulse OFF time, Peak-Current and Gap voltage as the inputs and among all possible outputs, in the present work Material Removal Rate and Surface Roughness are considered as outputs. In order to reduce the number of experiments Design of Experiments (DOE) was undertaken using Orthogonal Array and later on the outputs were optimized using ANN and PSO. It was found that the results obtained from both the techniques were tallying with each other.


2022 ◽  
pp. 824-842
Author(s):  
Kaushik Kumar ◽  
J. Paulo Davim

Electrical Discharge Machining (EDM) process is a widely used machining process in several fabrication, construction and repair work applications. Considering Pulse-On Time, Pulse OFF time, Peak-Current and Gap voltage as the inputs and among all possible outputs, in the present work Material Removal Rate and Surface Roughness are considered as outputs. In order to reduce the number of experiments Design of Experiments (DOE) was undertaken using Orthogonal Array and later on the outputs were optimized using ANN and PSO. It was found that the results obtained from both the techniques were tallying with each other.


2021 ◽  
Vol 1028 ◽  
pp. 391-396
Author(s):  
Muhammad Firly Firmansyah ◽  
Suwarno Suwarno ◽  
Yanuar Rohmat Aji Pradana ◽  
Suprayitno Suprayitno

Electrical discharge machining (EDM) is a non-conventional process that is widely used for high-precision machining, complex product shapes, and high hardness materials. The EDM mechanism is based on the thermoelectric energy between the electrode and the workpiece. The EDM process has many parameters that can be adjusted, such as discharge current, voltage, pulse on time, pulse off time, electrode polarity, workpiece material, electrode material, dielectric fluid type, flushing pressure, flushing direction and flushing method. This study aims to find the parameters of the EDM process to optimize its productivity indicated by material removal rate (MRR) and its quality indicated by surface roughness of SS-316 material. The varied parameters were discharge current, pulse on time, and pulse off time with 3 levels for each parameter. Fractional orthogonal array L9 were applied for three 3-level variables. Performance fluctuation due to noise factors were simply approximated by 3 replicating measurements to estimate mean and standard deviation. Taguchi S/N ratio were adopted as robustness index for the optimum parameter design. The optimization results show that the discharge current 30A, pulse on time 100μs, and pulse off time 8μs are the optimum for MRR. As for surface roughness, the discharge current is 10A, pulse on time is 100μs, and pulse off time is 8μs. The only different of EDM parameter for optimum MRR and optimum Ra is discharge current.


Sign in / Sign up

Export Citation Format

Share Document