Optimal path planning of a disinfection mobile robot against COVID-19 in a ROS-based research platform

2021 ◽  
Vol 16 (4) ◽  
pp. 405-417
Author(s):  
L. Banjanovic-Mehmedovic ◽  
I. Karabegovic ◽  
J. Jahic ◽  
M. Omercic

Due to COVID-19 pandemic, there is an increasing demand for mobile robots to substitute human in disinfection tasks. New generations of disinfection robots could be developed to navigate in high-risk, high-touch areas. Public spaces, such as airports, schools, malls, hospitals, workplaces and factories could benefit from robotic disinfection in terms of task accuracy, cost, and execution time. The aim of this work is to integrate and analyse the performance of Particle Swarm Optimization (PSO) algorithm, as global path planner, coupled with Dynamic Window Approach (DWA) for reactive collision avoidance using a ROS-based software prototyping tool. This paper introduces our solution – a SLAM (Simultaneous Localization and Mapping) and optimal path planning-based approach for performing autonomous indoor disinfection work. This ROS-based solution could be easily transferred to different hardware platforms to substitute human to conduct disinfection work in different real contaminated environments.

2018 ◽  
Vol 249 ◽  
pp. 03011
Author(s):  
Keimargeo McQueen ◽  
Sara Darensbourg ◽  
Carl Moore ◽  
Tarik Dickens ◽  
Clement Allen

We have designed a path planner for an additive manufacturing (AM) prototype that consists of two robotic arms which collaborate on a single part. Theoretically, with two nozzle equipped arms, a part can be 3D printed twice as fast. Moreover, equipping the second robot with a machining tool enables the completion of secondary operations like hole reaming or surface milling before the printing is finished. With two arms in the part space care must be taken to ensure that the arms collaborate intelligently; in particular, tasks must be planned so that the robots do not collide. This paper discusses the development of a robot path planner to efficiently print segments with two arms, while maintaining a safe distance between them. A solution to the travelling salesman problem, an optimal path planning problem, was used to successfully determine the robots path plans while a simple nozzle-to-nozzle distance calculation was added to represent avoiding robot-to-robot collisions. As a result, in simulation, the average part completion time was reduced by 45% over the single nozzle case. Importantly, the algorithm can theoretically be run on n-robots, so time reduction possibilities are large.


Author(s):  
Azad Asar ◽  
Erkan Uslu ◽  
Nihal Altuntas ◽  
Mehmet Fatih Amasyali ◽  
Sirma Yavuz

Main study areas for robotics research can be given as: mapping, localization, navigation and exploration. Given a robot’s current position, partial map of the environment and a goal position; navigation problem can be defined as optimal path planning and path following. Path planning and path following problem should be handled according to environment being static or dynamic, robot's mobility capabilities, sensors used on the robot and the roughness of the environment. In the study a four wheeled, skid-steering robot with laser range finder and depth sensor is built for Gazebo simulation environment. Also a statically structured labyrinth that consists of 15 degree continuous ramps, 15 degree discontinuous ramps, amorphous holes that robot cannot autonomously escape from if fallen into, walls and discontinuous obstacles that are below the robot laser height. 2D simultaneous localization and mapping, 3D mapping, path planning and path following with respect to the 3D map are implemented on Robot Operating System (ROS). Optimal path planning in rough terrain is accomplished by combining A* heuristic with a function of height difference of the 3D map nodes. Path following is carried out by turning-to and moving-towards actions on each sequential path node pairs. Tests performed on the labyrinth shows that obstacle avoidance, path planning and path following can be carried out successfully with the given implementation.


2014 ◽  
Vol 679 ◽  
pp. 171-175 ◽  
Author(s):  
R.N. Farah ◽  
N. Irwan ◽  
Raja Lailatul Zuraida ◽  
Amira Shahirah ◽  
Mohd Hanafi Omar

There are numerous numbers of methods that have been introduced to the Unmanned Ground Vehicle (UGV) to find its optimal path. The purpose of this paper is to navigate a cost effective UGV known as MG-TruckS with optimal path planning in an outdoor environment. A Modified Virtual Semi Circle approach is proposed based on situated-activity paradigm. This approach is divided into two phase to compute a free collision path planning; detection and avoidance phase. Implementation of five ultrasonic range finder sensors with a very small blind zone created on purpose and the formation of three layers of influence zone shows the optimized path planning without making any unnecessary obstacle avoidance being computed.


Procedia CIRP ◽  
2021 ◽  
Vol 96 ◽  
pp. 324-329
Author(s):  
Frederik Wulle ◽  
Max Richter ◽  
Christoph Hinze ◽  
Alexander Verl

Author(s):  
Ahmed Barnawi ◽  
Prateek Chhikara ◽  
Rajkumar Tekchandani ◽  
Neeraj Kumar ◽  
Mehrez Boulares

Sign in / Sign up

Export Citation Format

Share Document