scholarly journals Efficient Path Planning of Secondary Additive Manufacturing Operations

2018 ◽  
Vol 249 ◽  
pp. 03011
Author(s):  
Keimargeo McQueen ◽  
Sara Darensbourg ◽  
Carl Moore ◽  
Tarik Dickens ◽  
Clement Allen

We have designed a path planner for an additive manufacturing (AM) prototype that consists of two robotic arms which collaborate on a single part. Theoretically, with two nozzle equipped arms, a part can be 3D printed twice as fast. Moreover, equipping the second robot with a machining tool enables the completion of secondary operations like hole reaming or surface milling before the printing is finished. With two arms in the part space care must be taken to ensure that the arms collaborate intelligently; in particular, tasks must be planned so that the robots do not collide. This paper discusses the development of a robot path planner to efficiently print segments with two arms, while maintaining a safe distance between them. A solution to the travelling salesman problem, an optimal path planning problem, was used to successfully determine the robots path plans while a simple nozzle-to-nozzle distance calculation was added to represent avoiding robot-to-robot collisions. As a result, in simulation, the average part completion time was reduced by 45% over the single nozzle case. Importantly, the algorithm can theoretically be run on n-robots, so time reduction possibilities are large.

2021 ◽  
Vol 16 (4) ◽  
pp. 405-417
Author(s):  
L. Banjanovic-Mehmedovic ◽  
I. Karabegovic ◽  
J. Jahic ◽  
M. Omercic

Due to COVID-19 pandemic, there is an increasing demand for mobile robots to substitute human in disinfection tasks. New generations of disinfection robots could be developed to navigate in high-risk, high-touch areas. Public spaces, such as airports, schools, malls, hospitals, workplaces and factories could benefit from robotic disinfection in terms of task accuracy, cost, and execution time. The aim of this work is to integrate and analyse the performance of Particle Swarm Optimization (PSO) algorithm, as global path planner, coupled with Dynamic Window Approach (DWA) for reactive collision avoidance using a ROS-based software prototyping tool. This paper introduces our solution – a SLAM (Simultaneous Localization and Mapping) and optimal path planning-based approach for performing autonomous indoor disinfection work. This ROS-based solution could be easily transferred to different hardware platforms to substitute human to conduct disinfection work in different real contaminated environments.


2019 ◽  
Vol 16 (9) ◽  
pp. 3717-3727
Author(s):  
Monica Sood ◽  
Sahil Verma ◽  
Vinod Kumar Panchal ◽  
Kavita

The planning of optimal path is an important research domain due to vast applications of optimal path planning in the robotics, simulation and modeling, computer graphics, virtual reality estimation and animation, and bioinformatics. The optimal path planning application demands to determine the collision free shortest and optimal path. There can be numerous possibilities that to find the path with optimal length based on different types of available obstacles during the path and different types of workspace environment. This research work aims to identify the optimum path from the initial source-point to final point for the unknown workspace environment consists of static obstacles. For this experimentation, swarm intelligence based hybrid concepts are considered as the work collaboration and intelligence behavior of swarm agents provides the resourceful solution of NP hard problems. Here, the hybridization of concepts makes the solution of problem more efficient. Among swarm intelligence concepts, cuckoo search (CS) algorithm is one of the efficient algorithms due to clever behavior and brood parasitic property of cuckoo birds. In this research work, two hybrid concepts are proposed. First algorithm is the hybridized concept of cuckoo search with bat algorithm (BA) termed as CS-BAPP. Another algorithm is the hybridized concept of cuckoo search with firefly algorithm (FA) termed as CS-FAPP. Both algorithms are initially tested on the benchmarks functions and applied to the path planning problem. For path planning, a real time dataset area of Alwar region situated at Rajasthan (India) is considered. The selected region consists of urban and dense vegetation land cover features. The results for the optimal path planning on Alwar region are assessed using the evaluation metrics of minimum number of iterations, error rate, success rate, and simulation time. Moreover, the results are also compared with the individual FA, BA, and CS along with the comparison of hybrid concepts.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2640 ◽  
Author(s):  
Junfeng Xin ◽  
Jiabao Zhong ◽  
Fengru Yang ◽  
Ying Cui ◽  
Jinlu Sheng

The genetic algorithm (GA) is an effective method to solve the path-planning problem and help realize the autonomous navigation for and control of unmanned surface vehicles. In order to overcome the inherent shortcomings of conventional GA such as population premature and slow convergence speed, this paper proposes the strategy of increasing the number of offsprings by using the multi-domain inversion. Meanwhile, a second fitness evaluation was conducted to eliminate undesirable offsprings and reserve the most advantageous individuals. The improvement could help enhance the capability of local search effectively and increase the probability of generating excellent individuals. Monte-Carlo simulations for five examples from the library for the travelling salesman problem were first conducted to assess the effectiveness of algorithms. Furthermore, the improved algorithms were applied to the navigation, guidance, and control system of an unmanned surface vehicle in a real maritime environment. Comparative study reveals that the algorithm with multi-domain inversion is superior with a desirable balance between the path length and time-cost, and has a shorter optimal path, a faster convergence speed, and better robustness than the others.


2013 ◽  
Vol 418 ◽  
pp. 15-19 ◽  
Author(s):  
Min Huang ◽  
Ping Ding ◽  
Jiao Xue Huan

Global optimal path planning is always an important issue in mobile robot navigation. To avoid the limitation of local optimum and accelerate the convergence of the algorithm, a new robot global optimal path planning method is proposed in the paper. It adopts a new transition probability function which combines with the angle factor function and visibility function, and at the same time, sets penalty function by a new pheromone updating model to improve the accuracy of the route searching. The results of computer emulating experiments prove that the method presented is correct and effective, and it is better than the genetic algorithm and traditional ant colony algorithm for global path planning problem.


Author(s):  
A. Gasparetto ◽  
R. Vidoni ◽  
E. Saccavini ◽  
D. Pillan

In this work, a robotic painting task is addressed in order to automate and improve the efficiency of the process. Usually, path planning in robotic painting is done through self learning programming. Recently, different automated and semi-automated systems have been developed in order to avoid this procedure by using a CAD-drawing to create a CAD-guided trajectory for the paint gun, or by acquiring and recognizing the overall shape of the object to be painted within a library of prestored shapes with associated pre-defined paths. However, a general solution is still lacking, which enables one to overcome the need for a CAD-drawing and to deal with any kind of shapes. In this paper, graph theory and operative research techniques are applied to provide a general and optimal solution of the path planning problem for painting robots. The object to be painted is partitioned into primitives that can be represented by a graph. The Chinese Postman algorithm is then run on the graph in order to obtain a minimum length path covering all the arcs (Eulerian path). However, this path is not always optimal with respect to the constraints imposed by the painting process, hence dedicated algorithms have been developed in order to generate the optimal path in such cases. Based on the optimal path, the robot trajectories are planned by imposing a constant velocity motion of the spray gun, in order to ensure a uniform distribution of the paint over the object surface. The proposed system for optimal path planning has been implemented in a Matlab environment and extensively tested with excellent results in terms of time, costs and usability.


2016 ◽  
Vol 26 (2) ◽  
pp. 297-308 ◽  
Author(s):  
Martin Klaučo ◽  
Slavomír Blažek ◽  
Michal Kvasnica

Abstract A path planning problem for a heterogeneous vehicle is considered. Such a vehicle consists of two parts which have the ability to move individually, but one of them has a shorter range and is therefore required to keep in a close distance to the main vehicle. The objective is to devise an optimal path of minimal length under the condition that at least one part of the heterogeneous system visits all desired waypoints exactly once. Two versions of the problem are considered. One assumes that the order in which the waypoints are visited is known a priori. In such a case we show that the optimal path can be found by solving a mixed-integer second-order cone problem. The second version assumes that the order in which the waypoints are visited is not known a priori, but can be optimized so as to shorten the length of the path. Two approaches to solve this problem are presented and evaluated with respect to computational complexity.


2017 ◽  
Vol 36 (4) ◽  
pp. 403-413 ◽  
Author(s):  
Wuchen Li ◽  
Shui-Nee Chow ◽  
Magnus Egerstedt ◽  
Jun Lu ◽  
Haomin Zho

We propose a novel algorithm to find the global optimal path in 2D environments with moving obstacles, where the optimality is understood relative to a general convex continuous running cost. By leveraging the geometric structures of optimal solutions and using gradient flows, we convert the path-planning problem into a system of finite dimensional ordinary differential equations, whose dimensions change dynamically. Then a stochastic differential equation based optimization method, called intermittent diffusion, is employed to obtain the global optimal solution. We demonstrate, via numerical examples, that the new algorithm can solve the problem efficiently.


Sign in / Sign up

Export Citation Format

Share Document