Optimal Path Planning and Control of a Hexarotor with Mass Uncertainty in the Presence of Dynamic Obstacles and Wind Using Sliding Mode and Adaptive PSO Algorithm

Author(s):  
Nima Sina ◽  
Peyman Amiri ◽  
Mohammad Danesh
2017 ◽  
Vol 22 (4) ◽  
pp. 1600-1609 ◽  
Author(s):  
An Wan ◽  
Jing Xu ◽  
Heping Chen ◽  
Song Zhang ◽  
Ken Chen

2021 ◽  
Vol 9 (4) ◽  
pp. 405
Author(s):  
Raphael Zaccone

While collisions and groundings still represent the most important source of accidents involving ships, autonomous vessels are a central topic in current research. When dealing with autonomous ships, collision avoidance and compliance with COLREG regulations are major vital points. However, most state-of-the-art literature focuses on offline path optimisation while neglecting many crucial aspects of dealing with real-time applications on vessels. In the framework of the proposed motion-planning, navigation and control architecture, this paper mainly focused on optimal path planning for marine vessels in the perspective of real-time applications. An RRT*-based optimal path-planning algorithm was proposed, and collision avoidance, compliance with COLREG regulations, path feasibility and optimality were discussed in detail. The proposed approach was then implemented and integrated with a guidance and control system. Tests on a high-fidelity simulation platform were carried out to assess the potential benefits brought to autonomous navigation. The tests featured real-time simulation, restricted and open-water navigation and dynamic scenarios with both moving and fixed obstacles.


2021 ◽  
Vol 16 (4) ◽  
pp. 405-417
Author(s):  
L. Banjanovic-Mehmedovic ◽  
I. Karabegovic ◽  
J. Jahic ◽  
M. Omercic

Due to COVID-19 pandemic, there is an increasing demand for mobile robots to substitute human in disinfection tasks. New generations of disinfection robots could be developed to navigate in high-risk, high-touch areas. Public spaces, such as airports, schools, malls, hospitals, workplaces and factories could benefit from robotic disinfection in terms of task accuracy, cost, and execution time. The aim of this work is to integrate and analyse the performance of Particle Swarm Optimization (PSO) algorithm, as global path planner, coupled with Dynamic Window Approach (DWA) for reactive collision avoidance using a ROS-based software prototyping tool. This paper introduces our solution – a SLAM (Simultaneous Localization and Mapping) and optimal path planning-based approach for performing autonomous indoor disinfection work. This ROS-based solution could be easily transferred to different hardware platforms to substitute human to conduct disinfection work in different real contaminated environments.


2019 ◽  
Author(s):  
Meryem Deniz ◽  
Takeshi Yamasaki ◽  
Sivasubramanya N. Balakrishnan ◽  
Tansel Yucelen

Procedia CIRP ◽  
2021 ◽  
Vol 96 ◽  
pp. 324-329
Author(s):  
Frederik Wulle ◽  
Max Richter ◽  
Christoph Hinze ◽  
Alexander Verl

Author(s):  
Ahmed Barnawi ◽  
Prateek Chhikara ◽  
Rajkumar Tekchandani ◽  
Neeraj Kumar ◽  
Mehrez Boulares

Sign in / Sign up

Export Citation Format

Share Document