An Analysis of Optimal Order Decision for Substitutable Perishable Products at Different Loss Rates

2021 ◽  
Vol 14 (1) ◽  
pp. 1
Author(s):  
Jing Wang
Author(s):  
Yi Wang

Supply chains are fundamental to the economy of the world and many supply chains focus on perishable items, such as food, or even clothing that is subject to a limited shelf life due to fashion and seasonable effects. G-networks have not been previously applied to this important area. Thus in this paper, we apply G-networks to supply chain systems and investigate an optimal order allocation problem for a N-node supply chain with perishable products that share the same order source of fresh products. The objective is to find an optimal order allocation strategy to minimize the purchase price per object from the perspective of the customers. An analytical solution based on G-networks with batch removal, together with optimization methods are shown to produce the desired results. The results are illustrated by a numerical example with realistic parameters.


2020 ◽  
Vol 14 (5-6) ◽  
pp. 601-612
Author(s):  
R. Patriarca ◽  
G. Di Gravio ◽  
F. Costantino ◽  
M. Tronci

AbstractPerishable products require accurate inventory control models as their effect on operations management can be critical. This assumption is particularly relevant in highly uncertain and dynamic markets, as for the ones generated by the pandemic era. This paper presents an inventory control model for perishable items with a demand rate variable over time, and dependent on the inventory rate. The model also considers the potential for backlogging and lost sales. Imperfect product quality is included, and deterioration is modelled as a time-dependent variable. The framework envisages the possibility to define variables affected by uncertainty in terms of probability distribution functions, which are then jointly managed via a Monte Carlo simulation. This paper is intended to provide an analytical formulation to deal with uncertainty and time-dependent inventory functions to be used for a variety of perishable products. The formulation is designed to support decision-making for the identification of the optimal order quantity. A numerical example exemplifies the outcomes of the paper and provides a cost-based sensitivity analysis to understand the role of main parameters.


2020 ◽  
Vol 26 ◽  
pp. 78
Author(s):  
Thirupathi Gudi ◽  
Ramesh Ch. Sau

We study an energy space-based approach for the Dirichlet boundary optimal control problem governed by the Laplace equation with control constraints. The optimality system results in a simplified Signorini type problem for control which is coupled with boundary value problems for state and costate variables. We propose a finite element based numerical method using the linear Lagrange finite element spaces with discrete control constraints at the Lagrange nodes. The analysis is presented in a combination for both the gradient and the L2 cost functional. A priori error estimates of optimal order in the energy norm is derived up to the regularity of the solution for both the cases. Theoretical results are illustrated by some numerical experiments.


Ports 2010 ◽  
2010 ◽  
Author(s):  
Rolf Schottle ◽  
Katherine Prickett
Keyword(s):  
Ex Situ ◽  

2010 ◽  
Vol 4 (2) ◽  
pp. 129-144 ◽  
Author(s):  
Marco Maschietti
Keyword(s):  

2020 ◽  
Vol 499 (2) ◽  
pp. 1531-1560
Author(s):  
Christer Sandin ◽  
Lars Mattsson

ABSTRACT Stellar winds of cool carbon stars enrich the interstellar medium with significant amounts of carbon and dust. We present a study of the influence of two-fluid flow on winds where we add descriptions of frequency-dependent radiative transfer (RT). Our radiation hydrodynamic models in addition include stellar pulsations, grain growth and ablation, gas-to-dust drift using one mean grain size, dust extinction based on both the small particle limit (SPL) and Mie scattering, and an accurate numerical scheme. We calculate models at high spatial resolution using 1024 gridpoints and solar metallicities at 319 frequencies, and we discern effects of drift by comparing drift models to non-drift models. Our results show differences of up to 1000 per cent in comparison to extant results. Mass-loss rates and wind velocities of drift models are typically, but not always, lower than in non-drift models. Differences are larger when Mie scattering is used instead of the SPL. Amongst other properties, the mass-loss rates of the gas and dust, dust-to-gas density ratio, and wind velocity show an exponential dependence on the dust-to-gas speed ratio. Yields of dust in the least massive winds increase by a factor 4 when drift is used. We find drift velocities in the range $10\!-\!67\, \mbox{km}\, \mbox{s}^{-1}$, which is drastically higher than in our earlier works that use grey RT. It is necessary to include an estimate of drift velocities to reproduce high yields of dust and low wind velocities.


Author(s):  
A. Gorzawski ◽  
R. B. Appleby ◽  
M. Giovannozzi ◽  
A. Mereghetti ◽  
D. Mirarchi ◽  
...  
Keyword(s):  

Author(s):  
Jie Yu ◽  
Saskia Hekker ◽  
Timothy R Bedding ◽  
Dennis Stello ◽  
Daniel Huber ◽  
...  

Abstract Mass loss by red giants is an important process to understand the final stages of stellar evolution and the chemical enrichment of the interstellar medium. Mass-loss rates are thought to be controlled by pulsation-enhanced dust-driven outflows. Here we investigate the relationships between mass loss, pulsations, and radiation, using 3213 luminous Kepler red giants and 135000 ASAS–SN semiregulars and Miras. Mass-loss rates are traced by infrared colours using 2MASS and WISE and by observed-to-model WISE fluxes, and are also estimated using dust mass-loss rates from literature assuming a typical gas-to-dust mass ratio of 400. To specify the pulsations, we extract the period and height of the highest peak in the power spectrum of oscillation. Absolute magnitudes are obtained from the 2MASS Ks band and the Gaia DR2 parallaxes. Our results follow. (i) Substantial mass loss sets in at pulsation periods above ∼60 and ∼100 days, corresponding to Asymptotic-Giant-Branch stars at the base of the period-luminosity sequences C′ and C. (ii) The mass-loss rate starts to rapidly increase in semiregulars for which the luminosity is just above the red-giant-branch tip and gradually plateaus to a level similar to that of Miras. (iii) The mass-loss rates in Miras do not depend on luminosity, consistent with pulsation-enhanced dust-driven winds. (iv) The accumulated mass loss on the Red Giant Branch consistent with asteroseismic predictions reduces the masses of red-clump stars by 6.3%, less than the typical uncertainty on their asteroseismic masses. Thus mass loss is currently not a limitation of stellar age estimates for galactic archaeology studies.


Sign in / Sign up

Export Citation Format

Share Document