dust mass
Recently Published Documents


TOTAL DOCUMENTS

202
(FIVE YEARS 90)

H-INDEX

29
(FIVE YEARS 10)

2022 ◽  
Vol 163 (2) ◽  
pp. 60
Author(s):  
Ye Wang ◽  
Biwei Jiang ◽  
Jun Li ◽  
He Zhao ◽  
Yi Ren

Abstract The dust temperature and mass of the supernova remnants (SNRs) in M31 are estimated by fitting the infrared spectral energy distribution calculated from the images in the Spitzer/IRAC4 and MIPS24, Herschel/PACS70, 100, and 160, and Herschel/SPIRE 250 and 350 μm bands. Twenty SNRs with relatively reliable photometry exhibit an average dust temperature of 20.1 − 1.5 + 1.8 K, which is higher than the surrounding and indicating the heating effect of supernova explosion. The dust mass of these SNRs ranges from about 100 to 800 M ⊙, much bigger than the SNRs in the Milky Way. On the other hand, this yields the dust surface density of 0.10 − 0.04 + 0.07 M ⊙ pc−2, about half of the surrounding area, which implies that about half dust in the SNRs is destroyed by the supernova explosion. The dust temperature, the radius, and thus the dust mass all demonstrate that the studied SNRs are old and very likely in the snowplow or even fade-away phase because of the limitation by the far distance and observation resolution of M31, and the results can serve as a reference to the final effect of supernova explosion on the surrounding dust.


2021 ◽  
Vol 21 (23) ◽  
pp. 18029-18053
Author(s):  
Cyril Brunner ◽  
Benjamin T. Brem ◽  
Martine Collaud Coen ◽  
Franz Conen ◽  
Maxime Hervo ◽  
...  

Abstract. The ice phase in mixed-phase clouds has a pivotal role in global precipitation formation as well as for Earth's radiative budget. Above 235 K, sparse particles with the special ability to initiate ice formation, ice-nucleating particles (INPs), are responsible for primary ice formation within these clouds. Mineral dust has been found to be one of the most abundant INPs in the atmosphere at temperatures colder than 258 K. However, the extent of the abundance and distribution of INPs remains largely unknown. To better constrain and quantify the impact of mineral dust on ice nucleation, we investigate the frequency of Saharan dust events (SDEs) and their contribution to the INP number concentration at 243 K and at a saturation ratio with respect to liquid water (Sw) of 1.04 at the High Altitude Research Station Jungfraujoch (JFJ; 3580 m a.s.l.) from February to December 2020. Using the single-scattering albedo Ångström exponent retrieved from a nephelometer and an Aethalometer, satellite-retrieved dust mass concentrations, simulated tropospheric residence times, and the attenuated backscatter signal from a ceilometer as proxies, we detected 26 SDEs, which in total contributed to 17 % of the time span analyzed. We found every SDE to show an increase in median INP concentrations compared to those of all non-SDE periods; however, they were not always statistically significant. Median INP concentrations of individual SDEs spread between 1.7 and 161 INP std L−1 and thus 2 orders of magnitude. In the entire period analyzed, 74.7 ± 0.2 % of all INPs were measured during SDEs. Based on satellite-retrieved dust mass concentrations, we argue that mineral dust is also present at JFJ outside of SDEs but at much lower concentrations, thus still contributing to the INP population. We estimate that 97 % of all INPs active in the immersion mode at 243 K and Sw=1.04 at JFJ are dust particles. Overall, we found INP number concentrations to follow a leptokurtic lognormal frequency distribution. We found the INP number concentrations during SDEs to correlate with the ceilometer backscatter signals from a ceilometer located 4.5 km north of JFJ and 1510 m lower in altitude, thus scanning the air masses at the same altitude as JFJ. Using the European ceilometer network allows us to study the atmospheric pathway of mineral dust plumes over a large domain, which we demonstrate in two case studies. These studies showed that mineral dust plumes form ice crystals at cirrus altitudes, which then sediment to lower altitudes. Upon sublimation in dryer air layers, the residual particles are left potentially pre-activated. Future improvements to the sampling lines of INP counters are required to study whether these particles are indeed pre-activated, leading to larger INP number concentrations than reported here.


2021 ◽  
Vol 5 (12) ◽  
pp. 277
Author(s):  
Kritti Sharma ◽  
Michael S. P. Kelley ◽  
Simran Joharle ◽  
Harsh Kumar ◽  
Vishwajeet Swain ◽  
...  

Abstract We monitored the comet 67P/Churyumov-Gerasimenko close to its perihelion in November 2021 with the GROWTH-India Telescope. We observed two outbursts of this comet on 2021 October 29.940 and November 17.864 UTC, −3.12 days and +15.81 days respectively from the perihelion date. The brightening in the first outburst appears as a compact source, with a radial extent up to 8.″5. The comet brightened by 0.26 ± 0.03 mag in the outburst, with a 27% increase in the effective geometric cross-section and total outburst dust mass of ∼5.3 × 105 kg. The second outburst caused a brightening of 0.49 ± 0.08 mag with effective geometric cross-section and total outburst dust mass 2.5 times larger than the first event. These outbursts are up to an order of magnitude larger than the strongest outburst event observed in situ by the Rosetta spacecraft in 2015.


2021 ◽  
Vol 922 (2) ◽  
pp. L30
Author(s):  
Katherine E. Whitaker ◽  
Desika Narayanan ◽  
Christina C. Williams ◽  
Qi Li ◽  
Justin S. Spilker ◽  
...  

Abstract Observations of cold molecular gas reservoirs are critical for understanding the shutdown of star formation in massive galaxies. While dust continuum is an efficient and affordable tracer, this method relies upon the assumption of a “normal” molecular-gas to dust mass ratio, δ GDR, typically of order 100. Recent null detections of quiescent galaxies in deep dust continuum observations support a picture where the cold gas and dust have been rapidly depleted or expelled. In this work, we present another viable explanation: a significant fraction of galaxies with low star formation per unit stellar mass are predicted to have extreme δ GDR ratios. We show that simulated massive quiescent galaxies at 0 < z < 3 in the simba cosmological simulations have δ GDR values that extend >4 orders of magnitude. The dust in most simulated quiescent galaxies is destroyed significantly more rapidly than the molecular gas depletes, and cannot be replenished. The transition from star-forming to quiescent halts dust formation via star formation processes, with dust subsequently destroyed by supernova shocks and thermal sputtering of dust grains embedded in hot plasma. After this point, the dust growth rate in the models is not sufficient to overcome the loss of >3 orders of magnitude in dust mass to return to normal values of δ GDR despite having high metallicity. Our results indicate that it is not straight forward to use a single observational indicator to robustly preselect exotic versus normal ratios. These simulations make strong predictions that can be tested with millimeter facilities.


2021 ◽  
pp. 014459872110558
Author(s):  
Jinming Mo ◽  
Wei Ma

Dust removal by ventilation is a commonly used dust control strategy. This study analyses the characteristics of airflow transport and dust pollution on a fully mechanised top-coal caving face at different inlet wind velocities by using a numerical simulation experiment, and the best wind velocity for dust suppression is obtained. When the inlet wind velocity fluctuates in the range of 0.5 to 3.0 m/s, the overall dust mass concentration on the working face initially increases and then remains stable, but in the range of 2.5 to 3.0 m/s, the changes in the overall dust mass concentration and dust mass concentration of the respiratory zone on the working face are not significant. The dust pollution in the respiratory zone produced by the hydraulic support lowering pillar and moving frame on the working face is quantitatively analysed at different inlet wind velocities of 2.5 to 3.0 m/s to determine the optimum wind velocity for dust suppression on the working face. The optimum wind speed for dust suppression is 2.6 m/s. This study lays a foundation for the ventilation design and dust control in the early stage of a mine and for the establishment of a clean and green production mine.


Wood Research ◽  
2021 ◽  
Vol 66 (4) ◽  
pp. 678-688
Author(s):  
ANKA OZANA ČAVLOVIĆ ◽  
IVAN BEŠLIĆ

Given the carcinogenicity of hardwood dust, the aim of this study was to determine the effectiveness of the photometric method for different types of woodworking machines and its application in determining the mass concentration of inhalable dust for raw and dry hardwoods. In addition to the optical part of the device, the input part of the measuring device contains the Institute of Occupational Medicine (IOM) inhalable dust filter holder. This correlation of gravimetric and photometric methods in determining the dust mass concentration showed that photometry underestimates the mass concentration measured gravimetrically. The results of this study recommend the application of a correction factor 2 for a timber band saw and a correction factor 3 for circular saws in determining the mass concentration of hardwood dust by the photometric method. It was showed that photometry can be used if the correction factor of the optical device has been previously tested for specific wood processing place.


2021 ◽  
Vol 65 (4) ◽  
pp. 354-358
Author(s):  
Anna M. Egorova ◽  
Lydia A. Lutsenko ◽  
Anna V. Sukhova ◽  
Vyacheslav V. Kolyuka ◽  
Gennady V. Fedorovich

Introduction. In the Russian Federation, occupational diseases associated with exposure to industrial aerosols occupy third place in the structure of occupational pathology. The predominant forms of occupational diseases included chronic dust bronchitis, pneumoconiosis( silicosis), chronic obstructive (asthmatic) bronchitis. For an objective assessment of dust exposure and calculation of the occupational health risk of employees of “dust” professions, it is advisable to clarify the criteria and methodology for assessing dust exposure as an independent and informative hygienic characteristic. The purpose of the study is to formulate additional criteria for assessing the risk of exposure to industrial aerosol; to substantiate the methodology for calculating the accumulation of dust particles in the lungs as an informative characteristic of inhaled dust that is subject to hygienic assessment when calculating the dust load, to clarify the methodology for managing the health risk of dust professions workers. Material and methods. The paper uses the technique of mathematical modelling. The calculation of the time of finding dust particles, taking into account their dispersion in various parts of the tracheobronchial tree, was carried out. Results. Taking into account the methodology for calculating the dust exposure by the value of the inhaled dust mass, additional criteria for assessing the hazard of exposure to industrial aerosol were formulated; the methodology for calculating the accumulated dust mass (ADM) was justified, the formation of ADM in tracheobronchial tree sites was estimated, taking into account the time dependence of the removal of dust particles of various dispersities from the tracheobronchial tree was estimated. The results of the study contribute to the improvement of hygienic criteria for the danger and harmfulness of working conditions according to the dust factor, the justification of preventive measures. Conclusions. The choice of the ADM index to clarify the information content of the calculated dust load value is justified. Improving the methodology of dust control helps to preserve employees’ health and reduce the level of occupational and production-related diseases.


2021 ◽  
Vol 53 ◽  
pp. 100748
Author(s):  
Li Liu ◽  
Shengli Yang ◽  
Ting Cheng ◽  
Xiaojing Liu ◽  
Yuanlong Luo ◽  
...  

2021 ◽  
Vol 7 (2) ◽  
pp. 110-118
Author(s):  
M. S. Paudel ◽  
P. Bhandari ◽  
S. Bhattarai

In this work, we have studied the far-infrared images of the dust cavity around the White Dwarf WD 0352-049 available in Infrared Astronomical Satellite Map from Sky View Observatory. The size of the cavity is 24.48 pc × 8.10 pc. We have studied the relative infrared flux density and calculated the dust color temperature and dust mass. The temperature of the whole cavity structure lies between a maximum value 24.09 ± 0.50 K to a minimum 21.87 ± 0.61K with fluctuation of 2.22 K and an average value of 23.09 ± 1.11 K. The small fluctuation of dust color temperature suggests that the dust in cavity structure is evolving independently and less disturbed from background radiation sources. The color map shows the identical distribution of flux at 60 μm and 100 μm and the inverse distribution of dust color temperature and dust mass. There is a Gaussian-like distribution of relative flux density, dust color temperature and dust mass. The Gaussian distribution of temperature suggests that the dusts in cavity are in local thermodynamic equilibrium. The study of relative flux density and dust color temperature along the major and minor axis shows there is a sinusoidal fluctuation of flux and temperature, which might be due to the wind generated by White Dwarf located nearby the center of the cavity structure. The total dust mass of the dust is found to be 0.07 Mʘ and that of gas is 13.66 Mʘ. The Jeans mass of the structure is less than the total mass of gas in the structure, suggesting the possibility of star formation activity by gravitational collapse in the future. Also, the study of inclination angle suggests that the three-dimensional shape of the structure is uniform and regularly shaped.


2021 ◽  
Author(s):  
Cyril Brunner ◽  
Benjamin Tobias Brem ◽  
Martine Collaud Coen ◽  
Franz Conen ◽  
Maxime Hervo ◽  
...  

Abstract. The ice phase in mixed-phase clouds has a pivotal role in global precipitation formation as well as for Earth's radiative budget. Above 235 K, sparse particles with the special ability to initiate ice formation, ice nucleating particles (INPs), are responsible for primary ice formation within these clouds. However, the abundance and distribution of INPs remain largely unknown. Mineral dust is known to be the most abundant INP in the atmosphere at temperatures colder than 258 K. To better constrain and quantify the impact of mineral dust on ice nucleation, we investigate the frequency of Saharan dust events (SDEs) and their contribution to the INP number concentration at 243 K and at a saturation ratio with respect to liquid water (Sw) of 1.04 at the High Altitude Research Station Jungfraujoch (JFJ; 3580 m a.s.l.) from February to December 2020. Using the single scattering albedo Angström exponent, satellite retrieved dust mass concentrations, simulated tropospheric residence times, and the attenuated backscatter signal from a ceilometer as proxies, we detected 26 SDEs, which in total contributed to 17 % of the time span analyzed. We found every SDE to show an increase in median INP concentrations compared to that of all non-SDE periods, however, not always statistically significant. Median INP concentrations of individual SDEs spread between 1.7 and 161 INP std L−1, thus, two orders of magnitude. In the entire period analyzed, 74.7 ± 0.2 % of all INPs were measured during SDEs. Based on satellite retrieved dust mass concentrations, we argue that mineral dust is also present at the JFJ outside of SDEs, but at much lower concentrations, thus still contributing to the INP population. We estimate 97.0 ± 0.3 % of all INPs active in the immersion mode at 243 K Sw = 1.04 at the JFJ to be mineral dust particles. Overall, we found INP number concentrations to follow a leptokurtic log-normal frequency distribution. We found the INP number concentrations during SDEs to correlate with the ceilometer backscatter signals from a ceilometer located 4.5 km north of the JFJ and 1510 m lower in altitude, thus scanning the air masses at the same altitude as the JFJ. Using the European ceilometer network allows studying the atmospheric pathway of mineral dust plumes over a large domain, which we demonstrate in two case studies. These studies showed that mineral dust plumes form ice crystals at cirrus altitudes, which then sediment to lower altitudes. Upon sublimation in dryer air layers, the residual particles are left potentially pre-activated. Future improvements to the sampling lines of INP counters are required to study if these particles are indeed pre-activated, leading to larger INP number concentrations than reported here.


Sign in / Sign up

Export Citation Format

Share Document