Development of empirical models for estimation diffuse solar radiation exergy in Turkey

2022 ◽  
Vol 37 (1) ◽  
pp. 24
Author(s):  
Nurullah Arslanoglu
2019 ◽  
Vol 43 (1) ◽  
pp. 80-94 ◽  
Author(s):  
Yao Feng ◽  
Dongmei Chen ◽  
Xinyi Zhao

Precise knowledge of direct and diffuse solar radiation is important for energy utilization and agricultural activities. However, field measurements in most areas of the world are only for total solar radiation. The satellite-retrieved direct and diffuse solar radiation show poor performance under overcast skies. Therefore, better empirical models are needed to estimate direct and diffuse solar radiation by considering the impact of aerosols over polluted regions. A case study is conducted in North China with the ground-measured solar radiation and satellite-retrieved aerosol optical depth to improve new empirical models at monthly (from 2000 to 2016) and daily (from 2006 to 2009) level. The improved empirical models are validated using the field measurements and compared with the existing models. Results suggest that these models perform well in estimating direct solar radiation at monthly ( R2 = 0.86–0.91, RMSE = 0.76–0.83 MJ/m2) and daily ( R2 = 0.91–0.94, RMSE = 1.51–1.64 MJ/m2) level. The accuracy of estimated monthly ( R2 = 0.95–0.96, RMSE = 0.57–0.65 MJ/m2) and daily ( R2 = 0.91–0.93, RMSE = 1.09–1.15 MJ/m2) diffuse solar radiation, particularly the maximum diffuse solar radiation value, has been improved compared to the existing models. The models presented in this study can be useful in the improvement and evaluation of solar radiation dataset over polluted regions similar to North China.


2017 ◽  
Vol 38 (23) ◽  
pp. 6894-6909 ◽  
Author(s):  
Seyed Hossein Hosseini Nazhad ◽  
Mohammad Mehdi Lotfinejad ◽  
Malihe Danesh ◽  
Rooh ul Amin ◽  
Shahaboddin Shamshirband

2016 ◽  
Vol 56 ◽  
pp. 246-260 ◽  
Author(s):  
Milan Despotovic ◽  
Vladimir Nedic ◽  
Danijela Despotovic ◽  
Slobodan Cvetanovic

2019 ◽  
Vol 5 (1) ◽  
pp. 6-13
Author(s):  
B. Pandey ◽  
R. P. Aryal ◽  
C. L. Gnawali ◽  
K. N. Poudyal ◽  
I. B. Karki ◽  
...  

An accurate knowledge and data of solar radiation and its component are indispensable for the utilization of solar energy. However radiation data are often inaccessible. In this regard, the empirical models are reliable tools. This paper aims to develop and evaluate three simple empirical models (linear, quadratic, and cubic) for estimation of monthly average daily diffuse solar radiation of Kathmandu. Developed Models correlates diffuse fraction with clearness index are based on the satellite data from the NASA Langley Research Center. The performance of models is found to be statistically significant which has been analyzed in terms of statistical indicators like RMSE, MBE and R2. Among the three models, the cubic model is best fit on the basis of statistical parameters. So that cubic model is recommended for the estimation of monthly average daily diffuse radiation at Kathmandu and similar climatic sites of Nepal.


Sign in / Sign up

Export Citation Format

Share Document