Robust and provable secure three-factor mutual authentication scheme using smart card

Author(s):  
M. Amutha Prabakar ◽  
R. Niranchana
Author(s):  
Mushtaq Hasson ◽  
Ali A. Yassin ◽  
Abdulla J. Yassin ◽  
Abdullah Mohammed Rashid ◽  
Aqeel A. Yaseen ◽  
...  

As a hopeful computing paradigm, cloud services are obtainable to end users based on pay-as-you-go service. Security is represented one of the vital issues for the extended adoption of cloud computing, with the object of accessing several cloud service providers, applications, and services by using anonymity features to authenticate the user. We present a good authentication scheme based on quick response (QR) code and smart card. Furthermore, our proposed scheme has several crucial merits such as key management, mutual authentication, one-time password, user anonymity, freely chosen password, secure password changes, and revocation by using QR code. The security of proposed scheme depends on crypto-hash function, QR-code validation, and smart card. Moreover, we view that our proposed scheme can resist numerous malicious attacks and are more appropriate for practical applications than other previous works. The proposed scheme has proved as a strong mutual authentication based on burrows-abadi-needham (BAN) logic and security analysis. Furthermore, our proposed scheme has good results compared with related work.


2021 ◽  
Author(s):  
Sheng-Kai Chen ◽  
Jenq-Shiou Leu ◽  
Hsieh Wen-Bin ◽  
Jui-Tang Wang ◽  
Tian Song

Abstract Remote user authentication schemes provide a system to verify the legitimacy of remote users’ authentication request over insecure communication channel. In last years, many authentication schemes using password and smart card have been proposed. However, password might be revealed or forgotten and smart card might be shared, lost or stolen. In contrast, the biometrics, such as face, fingerprint or iris, have no such weakness. With the trend of mobile payment, more and more applications of mobile payment use biometrics to replace password and smart card. In this paper, we propose a biometric-based remote authentication scheme substituting biometric and mobile device bounded by user for password and smart card. This scheme is more convenient, suitable and securer than the schemes using smart cards on mobile payment environment.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3598 ◽  
Author(s):  
SungJin Yu ◽  
KiSung Park ◽  
YoungHo Park

With the development of cloud computing and communication technology, users can access the internet of things (IoT) services provided in various environments, including smart home, smart factory, and smart healthcare. However, a user is insecure various types of attacks, because sensitive information is often transmitted via an open channel. Therefore, secure authentication schemes are essential to provide IoT services for legal users. In 2019, Pelaez et al. presented a lightweight IoT-based authentication scheme in cloud computing environment. However, we prove that Pelaez et al.’s scheme cannot prevent various types of attacks such as impersonation, session key disclosure, and replay attacks and cannot provide mutual authentication and anonymity. In this paper, we present a secure and lightweight three-factor authentication scheme for IoT in cloud computing environment to resolve these security problems. The proposed scheme can withstand various attacks and provide secure mutual authentication and anonymity by utilizing secret parameters and biometric. We also show that our scheme achieves secure mutual authentication using Burrows–Abadi–Needham logic analysis. Furthermore, we demonstrate that our scheme resists replay and man-in-the-middle attacks usingthe automated validation of internet security protocols and applications (AVISPA) simulation tool. Finally, we compare the performance and the security features of the proposed scheme with some existing schemes. Consequently, we provide better safety and efficiency than related schemes and the proposed scheme is suitable for practical IoT-based cloud computing environment.


Sign in / Sign up

Export Citation Format

Share Document