scholarly journals A Secure Lightweight Three-Factor Authentication Scheme for IoT in Cloud Computing Environment

Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3598 ◽  
Author(s):  
SungJin Yu ◽  
KiSung Park ◽  
YoungHo Park

With the development of cloud computing and communication technology, users can access the internet of things (IoT) services provided in various environments, including smart home, smart factory, and smart healthcare. However, a user is insecure various types of attacks, because sensitive information is often transmitted via an open channel. Therefore, secure authentication schemes are essential to provide IoT services for legal users. In 2019, Pelaez et al. presented a lightweight IoT-based authentication scheme in cloud computing environment. However, we prove that Pelaez et al.’s scheme cannot prevent various types of attacks such as impersonation, session key disclosure, and replay attacks and cannot provide mutual authentication and anonymity. In this paper, we present a secure and lightweight three-factor authentication scheme for IoT in cloud computing environment to resolve these security problems. The proposed scheme can withstand various attacks and provide secure mutual authentication and anonymity by utilizing secret parameters and biometric. We also show that our scheme achieves secure mutual authentication using Burrows–Abadi–Needham logic analysis. Furthermore, we demonstrate that our scheme resists replay and man-in-the-middle attacks usingthe automated validation of internet security protocols and applications (AVISPA) simulation tool. Finally, we compare the performance and the security features of the proposed scheme with some existing schemes. Consequently, we provide better safety and efficiency than related schemes and the proposed scheme is suitable for practical IoT-based cloud computing environment.

2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Feifei Wang ◽  
Guosheng Xu ◽  
Guoai Xu ◽  
Yuejie Wang ◽  
Junhao Peng

With the development of Internet of Things (IoT) technologies, Internet-enabled devices have been widely used in our daily lives. As a new service paradigm, cloud computing aims at solving the resource-constrained problem of Internet-enabled devices. It is playing an increasingly important role in resource sharing. Due to the complexity and openness of wireless networks, the authentication protocol is crucial for secure communication and user privacy protection. In this paper, we discuss the limitations of a recently introduced IoT-based authentication scheme for cloud computing. Furthermore, we present an enhanced three-factor authentication scheme using chaotic maps. The session key is established based on Chebyshev chaotic-based Diffie–Hellman key exchange. In addition, the session key involves a long-term secret. It ensures that our scheme is secure against all the possible session key exposure attacks. Besides, our scheme can effectively update user password locally. Burrows–Abadi–Needham logic proof confirms that our scheme provides mutual authentication and session key agreement. The formal analysis under random oracle model proves the semantic security of our scheme. The informal analysis shows that our scheme is immune to diverse attacks and has desired features such as three-factor secrecy. Finally, the performance comparisons demonstrate that our scheme provides optimal security features with an acceptable computation and communication overheads.


2013 ◽  
Vol 756-759 ◽  
pp. 3209-3214
Author(s):  
Zhen Peng Liu ◽  
Feng Long Wu ◽  
Kai Yu Shang ◽  
Wen Lei Chai

A cloud mutual authentication scheme (C-MAS) is proposed to solve the problem of authentication between user and cloud computing server. Trusted computing technology and traditional smart card methods are used in cloud computing service platform. The scheme completes the authentication of both sides in cloud computing, generates the session key according consulting, at the same time, verifies the credibility of cloud service platform. Analysis shows that our scheme can resist various kinds of possible attacks, so it is therefore more secure than other schemes. And the computing time meet the requirements of cloud computing environment.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5604
Author(s):  
Hsiao-Ling Wu ◽  
Chin-Chen Chang ◽  
Yao-Zhu Zheng ◽  
Long-Sheng Chen ◽  
Chih-Cheng Chen

The Internet of Things (IoT) is currently the most popular field in communication and information techniques. However, designing a secure and reliable authentication scheme for IoT-based architectures is still a challenge. In 2019, Zhou et al. showed that schemes pro-posed by Amin et al. and Maitra et al. are vulnerable to off-line guessing attacks, user tracking attacks, etc. On this basis, a lightweight authentication scheme based on IoT is proposed, and an authentication scheme based on IoT is proposed, which can resist various types of attacks and realize key security features such as user audit, mutual authentication, and session security. However, we found weaknesses in the scheme upon evaluation. Hence, we proposed an enhanced scheme based on their mechanism, thus achieving the security requirements and resisting well-known attacks.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2358 ◽  
Author(s):  
JoonYoung Lee ◽  
SungJin Yu ◽  
KiSung Park ◽  
YoHan Park ◽  
YoungHo Park

Internet of Things (IoT) environments such as smart homes, smart factories, and smart buildings have become a part of our lives. The services of IoT environments are provided through wireless networks to legal users. However, the wireless network is an open channel, which is insecure to attacks from adversaries such as replay attacks, impersonation attacks, and invasions of privacy. To provide secure IoT services to users, mutual authentication protocols have attracted much attention as consequential security issues, and numerous protocols have been studied. In 2017, Bae et al. presented a smartcard-based two-factor authentication protocol for multi-gateway IoT environments. However, we point out that Bae et al.’s protocol is vulnerable to user impersonation attacks, gateway spoofing attacks, and session key disclosure, and cannot provide a mutual authentication. In addition, we propose a three-factor mutual authentication protocol for multi-gateway IoT environments to resolve these security weaknesses. Then, we use Burrows–Abadi–Needham (BAN) logic to prove that the proposed protocol achieves secure mutual authentication, and we use the Automated Validation of Internet Security Protocols and Applications (AVISPA) tool to analyze a formal security verification. In conclusion, our proposed protocol is secure and applicable in multi-gateway IoT environments.


Author(s):  
Ahmed H. Aly ◽  
Atef Ghalwash ◽  
Mona M. Nasr ◽  
Ahmed A. Abd-El Hafez

The internet of things (IoT) and cloud computing are evolving technologies in the information technology field. Merging the pervasive IoT technology with cloud computing is an innovative solution for better analytics and decision-making. Deployed IoT devices offload different types of data to the cloud, while cloud computing converges the infrastructure, links up the servers, analyzes information obtained from the IoT devices, reinforces processing power, and offers huge storage capacity. However, this merging is prone to various cyber threats that affect the IoT-Cloud environment. Mutual authentication is considered as the forefront mechanism for cyber-attacks as the IoT-Cloud participants have to ensure the authenticity of each other and generate a session key for securing the exchanged traffic. While designing these mechanisms, the constrained nature of the IoT devices must be taken into consideration. We proposed a novel lightweight protocol (Light-AHAKA) for authenticating IoT-Cloud elements and establishing a key agreement for encrypting the exchanged sensitive data was proposed. In this paper, the formal verification of (Light-AHAKA) was presented to prove and verify the correctness of our proposed protocol to ensure that the protocol is free from design flaws before the deployment phase. The verification is performed based on two different approaches, the strand space model and the automated validation of internet security protocols and applications (AVISPA) tool.


2013 ◽  
Vol 756-759 ◽  
pp. 837-840 ◽  
Author(s):  
Sheng Chang Guo ◽  
Yi Liu ◽  
Jie Ling

This paper draws on the principle of identity-based public key encryption (IBE) system algorithm. A suitable Identity authentication scheme for cloud computing environment is proposed. Security analysis of the scheme is given. The proposed scheme using the bidirectional signature between Client and cloud server has solved the safety verification audit, and realized identity authentication in cloud computing. We provide end-to-end authentication instead of trusted third party, which solve the problem of Key Escrow and improve the efficiency of the management of the identity authentication.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7136
Author(s):  
Jihyeon Ryu ◽  
Dongwoo Kang ◽  
Hakjun Lee ◽  
Hyoungshick Kim ◽  
Dongho Won

Internet of Things (IoT) technology has recently been integrated with various healthcare devices to monitor patients’ health status and share it with their healthcare practitioners. Since healthcare data often contain personal and sensitive information, healthcare systems must provide a secure user authentication scheme. Recently, Adavoudi-Jolfaei et al. and Sharma and Kalra proposed a lightweight protocol using hash function encryption only for user authentication on wireless sensor systems. In this paper, we found some weaknesses in target schemes. We propose a novel three-factor lightweight user authentication scheme that addresses these weaknesses and verifies the security of the proposed scheme using a formal verification tool called ProVerif. In addition, our proposed scheme outperforms other proposed symmetric encryption-based schemes or elliptic curve-based schemes.


Sign in / Sign up

Export Citation Format

Share Document