A Sustainable Inventory Model for Setup and Ordering Cost Reduction under a Controllable Lead Time

Author(s):  
Malleeswaran Balasubramani ◽  
R. Uthayakumar
Author(s):  
Prashant Jindal ◽  
Anjana Solanki

This paper investigates the coordination issue in a decentralized supply chain having a vendor and a buyer for a defective product. The authors develop two inventory models with controllable lead time under service level constraint. The first one is propose under decentralized mode based on the Stackelberg model, the other one is propose under centralized mode of the integrated supply chain. Ordering cost reduction is also including as a decision variable along with shipping quantity, lead time and number of shipments. Computational findings using the software Matlab 7.0 are provided to find the optimal solution. The results of numerical examples show that centralized mode is better than that of decentralized mode, and to induce both vendor and buyer for coordination, proposed cost allocation model is effective. The authors also numerically investigate the effects of backorder parameter on the optimal solutions. Benefit of ordering cost reduction in both models is also provided.


2006 ◽  
Vol 170 (2) ◽  
pp. 481-495 ◽  
Author(s):  
Hung-Chi Chang ◽  
Liang-Yuh Ouyang ◽  
Kun-Shan Wu ◽  
Chia-Huei Ho

2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
M. F. Yang ◽  
Wei-Chung Tseng

This paper proposes a three-echelon inventory model with permissible delay in payments under controllable lead time and backorder consideration to find out the suitable inventory policy to enhance profit of the supply chain. In today’s highly competitive market, the supply chain management has become a critical issue in both practice and academic and supply chain members have to cooperate with each other to bring more benefits. In addition, the inventory policy is a key factor to influence the performance of the supply chain. Therefore, in this paper, we develop a three-echelon inventory model with permissible delay in payments under controllable lead time and backorder consideration. Furthermore, the purpose of this paper is to maximize the joint expect total profit on inventory model and attempt to discuss the inventory policy under different conditions. Finally, with a numerical example provided here to illustrate the solution procedure, we may discover that decision-makers can control lead time and payment time to enhance the performance of the supply chain.


2020 ◽  
Vol 54 (5) ◽  
pp. 1327-1346 ◽  
Author(s):  
S. Tharani ◽  
R. Uthayakumar

This paper presents a novel approach to safety stock management and investigates the impact of lead time reduction within an integrated vendor–buyer supply chain framework using present value where lead time and ordering cost reductions act dependently. In particular, the cost of the safety stock is determined by adopting a logistic approximation to the standard normal cumulative distribution. The service level is formulated in relation to the dimension of the single shipment, to the average demand of the buyer and to the number of admissible stockouts. We first discuss the case where the lead time and ordering cost reductions with linear function, and then consider the logarithmic functional relationship. Numerical examples including the sensitivity analysis with some managerial insights of system parameters is provided to validate the results of the supply chain models. The main contribution of this paper is introducing various types of ordering cost reduction in Braglia et al. (Appl. Stoc. Mod. Bus. Ind. 32 (2016) 99–112) by handling a new approach.


Sign in / Sign up

Export Citation Format

Share Document