Performance of immiscible and miscible CO2 injection process in a tight carbonate reservoir (experimental and simulation approach)

2015 ◽  
Vol 9 (3) ◽  
pp. 265 ◽  
Author(s):  
Ali Abedini ◽  
Farshid Torabi ◽  
Nader Mosavat
2020 ◽  
Author(s):  
Bilal Amjad ◽  
Oloruntoba Ogunsanwo ◽  
Mustafa Bawazir ◽  
Nabil Batita ◽  
Mohammed Siddiqui

2021 ◽  
Author(s):  
Kangxu Ren ◽  
Junfeng Zhao ◽  
Jian Zhao ◽  
Xilong Sun

Abstract At least three very different oil-water contacts (OWC) encountered in the deepwater, huge anticline, pre-salt carbonate reservoirs of X oilfield, Santos Basin, Brazil. The boundaries identification between different OWC units was very important to help calculating the reserves in place, which was the core factor for the development campaign. Based on analysis of wells pressure interference testing data, and interpretation of tight intervals in boreholes, predicating the pre-salt distribution of igneous rocks, intrusion baked aureoles, the silicification and the high GR carbonate rocks, the viewpoint of boundaries developed between different OWC sub-units in the lower parts of this complex carbonate reservoirs had been better understood. Core samples, logging curves, including conventional logging and other special types such as NMR, UBI and ECS, as well as the multi-parameters inversion seismic data, were adopted to confirm the tight intervals in boreholes and to predicate the possible divided boundaries between wells. In the X oilfield, hundreds of meters pre-salt carbonate reservoir had been confirmed to be laterally connected, i.e., the connected intervals including almost the whole Barra Velha Formation and/or the main parts of the Itapema Formation. However, in the middle and/or the lower sections of pre-salt target layers, the situation changed because there developed many complicated tight bodies, which were formed by intrusive diabase dykes and/or sills and the tight carbonate rocks. Many pre-salt inner-layers diabases in X oilfield had very low porosity and permeability. The tight carbonate rocks mostly developed either during early sedimentary process or by latter intrusion metamorphism and/or silicification. Tight bodies were firstly identified in drilled wells with the help of core samples and logging curves. Then, the continuous boundary were discerned on inversion seismic sections marked by wells. This paper showed the idea of coupling the different OWC units in a deepwater pre-salt carbonate play with complicated tight bodies. With the marking of wells, spatial distributions of tight layers were successfully discerned and predicated on inversion seismic sections.


2021 ◽  
Vol 73 (01) ◽  
pp. 20-22
Author(s):  
Trent Jacobs

In the midst of an industry downturn last year, the Abu Dhabi National Oil Company (ADNOC) reached a new oil production ceiling of 4 million B/D. The UAE’s largest producer has no intentions of slowing down. By decade’s end, ADNOC expects to have raised its maximum daily output by another million barrels. To cross that milestone, the company has set its sights on mastering the tight, thin, and unconventional formations that dot the UAE’s subsurface landscape. One of the places where such developments are hoped to unfold soon is known as Field Q. Found in southeastern Abu Dhabi, Field Q sits above a tight carbonate reservoir that holds an estimated 600 million bbl of oil. But with a permeability ranging from 1 to 3 millidarcy and poor vertical communication, the reservoir and its barrels have proven difficult to cultivate economically - until recently. ADNOC has published new details of its first onshore pilot of a “fishbone stimulation” that involved using more than a hundred hollow needles to pierce as far as 40 ft into the reservoir rock. The additional drainage netted by the fishbone needles boosted production threefold in the test well, as compared with its traditionally completed neighbors on the same pad. ADNOC ran the pilot in the summer of 2019 and by the end of the year saw enough production data to launch a wider 10-well pilot that remains underway. Based on a longer-term data set from these wells, the company will decide whether to leap into a fieldwide deployment of the niche completions technology. In the meantime, the petrotechnical team in charge of the test projects have issued roundly positive reviews of the fishbone technique in two recently presented technical papers (SPE 202636; SPE 203086) from the Abu Dhabi International Petroleum Exhibition & Conference (ADIPEC). “There is a chance that the fishbone-stimulated wells can avoid the drilling of multiple wells targeting different sublayers in the same zone,” said Rama Rao Rachapudi, listing one of several of the technology’s advantages over other approaches that were considered. The senior petroleum engineer with ADNOC, who is one of several authors of the papers that cover both the drilling and completions aspects of the pilot, shared during ADIPEC that his onshore team found motivation to test the technology after bringing in a batch of dis-mal appraisal wells. The fishbone system, also known as multilateral jetting stimulation technology, has been a specialized application ever since it was introduced just over a decade ago. Underscoring the potential impact of the current round of pilots on the technology’s adoption rate, ADNOC noted there were only around 30 worldwide fishbone deployments prior to this project. Most of those have been in the Middle East’s naturally fractured and layered carbonate formations - just like those of Field Q.


2019 ◽  
Vol 142 (6) ◽  
Author(s):  
Xiangnan Liu ◽  
Daoyong Yang

Abstract In this paper, techniques have been developed to interpret three-phase relative permeability and water–oil capillary pressure simultaneously in a tight carbonate reservoir from numerically simulating wireline formation tester (WFT) measurements. A high-resolution cylindrical near-wellbore model is built based on a set of pressures and flow rates collected by dual packer WFT in a tight carbonate reservoir. The grid quality is validated, the effective thickness of the WFT measurements is examined, and the effectiveness of the techniques is confirmed prior to performing history matching for both the measured pressure drawdown and buildup profiles. Water–oil relative permeability, oil–gas relative permeability, and water–oil capillary pressure are interpreted based on power-law functions and under the assumption of a water-wet reservoir and an oil-wet reservoir, respectively. Subsequently, three-phase relative permeability for the oil phase is determined using the modified Stone II model. Both the relative permeability and the capillary pressure of a water–oil system interpreted under an oil-wet condition match well with the measured relative permeability and capillary pressure of a similar reservoir rock type collected from the literature, while the relative permeability of an oil–gas system and the three-phase relative permeability bear a relatively high uncertainty. Not only is the reservoir determined as oil-wet but also the initial oil saturation is found to impose an impact on the interpreted water relative permeability under an oil-wet condition. Changes in water and oil viscosities and mud filtrate invasion depth affect the range of the movable fluid saturation of the interpreted water–oil relative permeabilities.


Sign in / Sign up

Export Citation Format

Share Document