Normal holonomy in Lorentzian space and submanifold geometry

2001 ◽  
Vol 50 (4) ◽  
pp. 1777-1788 ◽  
Author(s):  
Carlos Olmos ◽  
Adrian Will
Author(s):  
Talat Körpınar ◽  
Yasin Ünlütürk

AbstractIn this research, we study bienergy and biangles of moving particles lying on the surface of Lorentzian 3-space by using their energy and angle values. We present the geometrical characterization of bienergy of the particle in Darboux vector fields depending on surface. We also give the relationship between bienergy of the surface curve and bienergy of the elastic surface curve. We conclude the paper by providing bienergy-curve graphics for different cases.


2003 ◽  
Vol 2003 (55) ◽  
pp. 3479-3501 ◽  
Author(s):  
C. Atindogbe ◽  
J.-P. Ezin ◽  
Joël Tossa

Let(M,g)be a smooth manifoldMendowed with a metricg. A large class of differential operators in differential geometry is intrinsically defined by means of the dual metricg∗on the dual bundleTM∗of 1-forms onM. If the metricgis (semi)-Riemannian, the metricg∗is just the inverse ofg. This paper studies the definition of the above-mentioned geometric differential operators in the case of manifolds endowed with degenerate metrics for whichg∗is not defined. We apply the theoretical results to Laplacian-type operator on a lightlike hypersurface to deduce a Takahashi-like theorem (Takahashi (1966)) for lightlike hypersurfaces in Lorentzian spaceℝ1n+2.


2012 ◽  
Vol 16 (3) ◽  
pp. 1173-1203 ◽  
Author(s):  
Pascual Lucas ◽  
H. Fabian Ramirez-Ospina

Author(s):  
Amrinder Pal Singh ◽  
Cyriaque Atindogbe ◽  
Rakesh Kumar ◽  
Varun Jain

We study null hypersurfaces of a Lorentzian manifold with a closed rigging for the hypersurface. We derive inequalities involving Ricci tensors, scalar curvature, squared mean curvatures for a null hypersurface with a closed rigging of a Lorentzian space form and for a screen homothetic null hypersurface of a Lorentzian manifold. We also establish a generalized Chen–Ricci inequality for a screen homothetic null hypersurface of a Lorentzian manifold with a closed rigging for the hypersurface.


2016 ◽  
pp. 1-10
Author(s):  
Cícero P. Aquino ◽  
Henrique F. de Lima ◽  
Fábio R. dos Santos

2019 ◽  
Vol 35 (4) ◽  
pp. 519-536 ◽  
Author(s):  
Yan Bin Lin ◽  
Ying Lü ◽  
Chang Ping Wang
Keyword(s):  

2009 ◽  
Vol 18 (04) ◽  
pp. 559-586 ◽  
Author(s):  
M. D. POLLOCK

Causal solutions of the Gödel type, for which the line element is ds2 = dt2 - 2b e mxdtdv - c e 2mxdv2 - dx2 - dz2 with c = 0, are known to exist for gravitational theories containing a cosmological constant Λ and quadratic higher-derivative terms defined by the Lagrangian L = -(1/2)κ-2(R + 2Λ) + A1R2 + A2RijRij. Here, we show that acausal solutions, for which c < 0, containing closed time-like lines, can be constructed only if A2 = 0. Extension of this analysis to the heterotic superstring theory, including a generic massless scalar field ϕ plus quadratic and quartic gravitational terms [Formula: see text] and [Formula: see text], again yields a causal solution with c = 0, and also Λ = 0, as required for anomaly freedom, while solutions with c < 0 are ruled out. More general rotational space–times appear to be intractable analytically, and therefore it remains a matter of conjecture that the heterotic superstring admits only classical Lorentzian solutions which respect causality. For the energy density ρ(ϕ) of the scalar field is positive semi-definite only when g00 ≥ 0, which is equivalent to the causality condition g11 ≤ 0 or c ≥ 0 in a Lorentzian space–time for which det gij < 0; while ρ(ϕ) is unbounded from below in the presence of closed time-like lines, when g11 > 0, implying instability of ϕ, which will react back on the metric until it becomes causal.


2010 ◽  
Vol 20 (09) ◽  
pp. 2851-2859 ◽  
Author(s):  
ÁNGEL GIMÉNEZ

We study relativistic particles modeled by actions whose Lagrangians are arbitrary functions on the curvature of null paths in (2 + 1)-dimensions backgrounds with constant curvature. We obtain first integrals of the Euler–Lagrange equation by using geometrical methods involving the search for Killing vector fields along critical curves of the action. In the case in which Lagrangian density depends quadratically on Cartan curvature, it is shown that the mechanical system is governed by a stationary Korteweg–De Vries system. Motion equations are completely integrated by quadratures in terms of elliptic and hyperelliptic functions.


Sign in / Sign up

Export Citation Format

Share Document