causality condition
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 7)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Vol 36 (26) ◽  
pp. 2150190
Author(s):  
Nayan Sarkar ◽  
Susmita Sarkar ◽  
Farook Rahaman ◽  
Ksh. Newton Singh

A new compact stars nonsingular model is presented with the generalized Bardeen–Hayward mass function. Generalized Bardeen–Hayward described the regular black hole, however, due to its regularity or nonsingular nature we were inspired to construct an anisotropic compact stars model. Along with the ansatz mass function, we coupled it with a linear equation of state (EoS) to find the solutions of field equations. Indeed, the new solutions are physically viable in all physical ground. The energy conditions and Tolman–Oppenheimer–Volkoff (TOV)-equation are well satisfied signifying that the mass distribution is physically possible and at equilibrium. Also, the static stability criterion, the causality condition and Abreu’s stability condition hold good and therefore configurations are physically static stable. The same condition is further supported by the condition that the adiabatic index, which is greater than the Newtonian limit, i.e. [Formula: see text]. It is also noticed that the bag constant [Formula: see text] is proportional to the surface density in our model.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shao Li ◽  
Qi Ding ◽  
Yichen Yuan ◽  
Zhenzhu Yue

People can discriminate the synchrony between audio-visual scenes. However, the sensitivity of audio-visual synchrony perception can be affected by many factors. Using a simultaneity judgment task, the present study investigated whether the synchrony perception of complex audio-visual stimuli was affected by audio-visual causality and stimulus reliability. In Experiment 1, the results showed that audio-visual causality could increase one's sensitivity to audio-visual onset asynchrony (AVOA) of both action stimuli and speech stimuli. Moreover, participants were more tolerant of AVOA of speech stimuli than that of action stimuli in the high causality condition, whereas no significant difference between these two kinds of stimuli was found in the low causality condition. In Experiment 2, the speech stimuli were manipulated with either high or low stimulus reliability. The results revealed a significant interaction between audio-visual causality and stimulus reliability. Under the low causality condition, the percentage of “synchronous” responses of audio-visual intact stimuli was significantly higher than that of visual_intact/auditory_blurred stimuli and audio-visual blurred stimuli. In contrast, no significant difference among all levels of stimulus reliability was observed under the high causality condition. Our study supported the synergistic effect of top-down processing and bottom-up processing in audio-visual synchrony perception.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Rajesh Biswas ◽  
Ashutosh Dash ◽  
Najmul Haque ◽  
Shi Pu ◽  
Victor Roy

Abstract We investigate the causality and the stability of the relativistic viscous non-resistive magneto-hydrodynamics in the framework of the Israel-Stewart (IS) second-order theory, and also within a modified IS theory which incorporates the effect of magnetic fields in the relaxation equations of the viscous stress. We compute the dispersion relation by perturbing the fluid variables around their equilibrium values. In the ideal magnetohydrodynamics limit, the linear dispersion relation yields the well-known propagating modes: the Alfvén and the magneto-sonic modes. In the presence of bulk viscous pressure, the causality bound is found to be independent of the magnitude of the magnetic field. The same bound also remains true, when we take the full non-linear form of the equation using the method of characteristics. In the presence of shear viscous pressure, the causality bound is independent of the magnitude of the magnetic field for the two magneto-sonic modes. The causality bound for the shear-Alfvén modes, however, depends both on the magnitude and the direction of the propagation. For modified IS theory in the presence of shear viscosity, new non-hydrodynamic modes emerge but the asymptotic causality condition is the same as that of IS. In summary, although the magnetic field does influence the wave propagation in the fluid, the study of the stability and asymptotic causality conditions in the fluid rest frame shows that the fluid remains stable and causal given that they obey certain asymptotic causality condition.


2020 ◽  
Vol 35 (34) ◽  
pp. 2050280
Author(s):  
Shyam Das ◽  
Nayan Sarkar ◽  
Monimala Mondal ◽  
Farook Rahaman

We develop a new model for a spherically symmetric dark matter fluid sphere containing two regions: (i) Isotropic inner region with constant density and (ii) Anisotropic outer region. We solve the system of field equation by assuming a particular density profile along with a linear equation of state. The obtained solutions are well-behaved and physically acceptable which represent equilibrium and stable matter configuration by satisfying the Tolman–Oppenheimer–Volkoff (TOV) equation and causality condition, condition on adiabatic index, Harrison–Zeldovich–Novikov criterion, respectively. We consider the compact star EXO 1785-248 (Mass [Formula: see text] and radius R[Formula: see text]8.8 km) to analyze our solutions by graphical demonstrations.


2019 ◽  
Vol 97 (10) ◽  
pp. 1075-1082 ◽  
Author(s):  
Nasr Ahmed ◽  
Sultan Z. Alamri

A new kind of evolution for cyclic models in which the Hubble parameter oscillates and remains positive has been explored in a specific f(R, T) gravity reconstruction. A singularity-free cyclic universe with negative varying cosmological constant has been obtained, which supports the role suggested for negative Λ in stopping the eternal acceleration. The cosmological solutions have been obtained for the case of a flat universe, supported by observations. The cosmic pressure grows without singular values; it is positive during the early-time decelerated expansion and negative during the late-time accelerating epoch. The time-varying equation of state parameter ω(t) shows quintom behavior and is restricted to the range –2.25 ≤ ω(t) ≲ 1/3. The validity of the classical linear energy conditions and the sound speed causality condition has been studied. The non-conventional mechanism of negative cosmological constant that are expected to address the late-time acceleration has been discussed.


Nanophotonics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 1063-1069 ◽  
Author(s):  
SeokJae Yoo ◽  
Suyeon Lee ◽  
Jong-Ho Choe ◽  
Q-Han Park

AbstractWe propose a homogenization scheme for metamaterials that utilizes causality to determine their effective parameters. By requiring the Kramers-Kronig causality condition in the homogenization of metamaterials, we show that the effective parameters can be chosen uniquely, in contrast to the conventional parameter retrieval method which has unavoidable phase ambiguity arising from the multivalued logarithm function. We demonstrate that the effective thickness of metamaterials can also be determined to a specific value by saturating the minimum-error condition for the causality restriction. Our causal homogenization provides a robust and accurate characterization method for metamaterials.


2018 ◽  
Vol 27 (16) ◽  
pp. 1950007
Author(s):  
M. Sharif ◽  
Arfa Waseem

This paper analyzes the anisotropic stellar evolution governed by polytropic equation-of-state in the framework of [Formula: see text] gravity, where [Formula: see text]. We construct the field equations, hydrostatic equilibrium equation and trace equation to obtain their solutions numerically under the influence of [Formula: see text] gravity model, where [Formula: see text] and [Formula: see text] are arbitrary constants. We examine the dependence of various physical characteristics such as radial/tangential pressure, energy density, anisotropic factor, total mass and surface redshift for specific values of the model parameters. The physical acceptability of the considered model is discussed by verifying the validity of energy conditions, causality condition and adiabatic index. We also study the effects arising due to strong nonminimal matter-curvature coupling on anisotropic polytropes. It is found that the polytropic stars are stable and their maximum mass point lies within the required observational Chandrasekhar limit.


Sign in / Sign up

Export Citation Format

Share Document