RELATIVISTIC PARTICLES ALONG NULL CURVES IN 3D LORENTZIAN SPACE FORMS

2010 ◽  
Vol 20 (09) ◽  
pp. 2851-2859 ◽  
Author(s):  
ÁNGEL GIMÉNEZ

We study relativistic particles modeled by actions whose Lagrangians are arbitrary functions on the curvature of null paths in (2 + 1)-dimensions backgrounds with constant curvature. We obtain first integrals of the Euler–Lagrange equation by using geometrical methods involving the search for Killing vector fields along critical curves of the action. In the case in which Lagrangian density depends quadratically on Cartan curvature, it is shown that the mechanical system is governed by a stationary Korteweg–De Vries system. Motion equations are completely integrated by quadratures in terms of elliptic and hyperelliptic functions.

2015 ◽  
Vol 12 (10) ◽  
pp. 1550111 ◽  
Author(s):  
Mircea Crasmareanu ◽  
Camelia Frigioiu

Fix ξ a unitary vector field on a Riemannian manifold M and γ a non-geodesic Frenet curve on M satisfying the Rytov law of polarization optics. We prove in these conditions that γ is a Legendre curve for ξ if and only if the γ-Fermi–Walker covariant derivative of ξ vanishes. The cases when γ is circle or helix as well as ξ is (conformal) Killing vector filed or potential vector field of a Ricci soliton are analyzed and an example involving a three-dimensional warped metric is provided. We discuss also K-(para)contact, particularly (para)Sasakian, manifolds and hypersurfaces in complex space forms.


2001 ◽  
Vol 16 (30) ◽  
pp. 4845-4863 ◽  
Author(s):  
ANGEL FERRÁNDEZ ◽  
ANGEL GIMÉNEZ ◽  
PASCUAL LUCAS

In this paper we introduce a reference along a null curve in an n-dimensional Lorentzian space with the minimum number of curvatures. That reference generalizes the reference of Bonnor for null curves in Minkowski space–time and it is called the Cartan frame of the curve. The associated curvature functions are called the Cartan curvatures of the curve. We characterize the null helices (that is, null curves with constant Cartan curvatures) in n-dimensional Lorentzian space forms and we obtain a complete classification of them in low dimensions.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Óscar J. Garay ◽  
Álvaro Pámpano ◽  
Changhwa Woo

We study geodesics in hypersurfaces of a Lorentzian space formM1n+1(c), which are critical curves of theM1n+1(c)-bending energy functional, for variations constrained to lie on the hypersurface. We characterize critical geodesics showing that they live fully immersed in a totally geodesicM13(c)and that they must be of three different types. Finally, we consider the classification of surfaces in the Minkowski 3-space foliated by critical geodesics.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 46
Author(s):  
Ji-Eun Lee

In this paper, we first find the properties of the generalized Tanaka–Webster connection in a contact Lorentzian manifold. Next, we find that a necessary and sufficient condition for the ∇ ^ -geodesic is a magnetic curve (for ∇) along slant curves. Finally, we prove that when c ≤ 0 , there does not exist a non-geodesic slant Frenet curve satisfying the ∇ ^ -Jacobi equations for the ∇ ^ -geodesic vector fields in M. Thus, we construct the explicit parametric equations of pseudo-Hermitian pseudo-helices in Lorentzian space forms M 1 3 ( H ^ ) for H ^ = 2 c > 0 .


2010 ◽  
Vol 81 (3) ◽  
pp. 496-506 ◽  
Author(s):  
JOSU ARROYO ◽  
ÓSCAR J. GARAY ◽  
JOSE MENCÍA

AbstractThe classical variational analysis of curvature energy functionals, acting on spaces of curves of a Riemannian manifold, is extremely complicated, and the procedure usually can not be completely developed under such a degree of generality. Sometimes this difficulty may be overcome by focusing on specific actions in real space forms. In this note, we restrict ourselves to quadratic Lagrangian energies acting on the space of closed curves of the 2-sphere. We solve the Euler–Lagrange equation and show that there exists a two-parameter family of closed critical curves. We also discuss the stability of the circular critical points. Since, even for this class of energies, the complete variational analysis is quite involved, we use instead a numerical approach to provide a useful method of visualization of relevant aspects concerning uniqueness, stability and explicit representation of the closed critical curves.


2019 ◽  
Vol 10 (4) ◽  
pp. 427-436
Author(s):  
Sudhakar Kumar Chaubey ◽  
Sunil Kumar Yadav

AbstractWe set a definition of a {(0,2)}-type tensor on the generalized Sasakian-space-forms. The necessary and sufficient conditions for W-semisymmetric generalized Sasakian-space forms are studied. Certain results of the Ricci solitons, the Killing vector fields and the closed 1-form on the generalized Sasakian-space-forms are derived. We also verify our results by taking non-trivial examples of the generalized Sasakian-space-forms.


Author(s):  
Michael Kachelriess

This chapter introduces tensor fields, covariant derivatives and the geodesic equation on a (pseudo-) Riemannian manifold. It discusses how symmetries of a general space-time can be found from the Killing equation, and how the existence of Killing vector fields is connected to global conservation laws.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 348
Author(s):  
Merced Montesinos ◽  
Diego Gonzalez ◽  
Rodrigo Romero ◽  
Mariano Celada

We report off-shell Noether currents obtained from off-shell Noether potentials for first-order general relativity described by n-dimensional Palatini and Holst Lagrangians including the cosmological constant. These off-shell currents and potentials are achieved by using the corresponding Lagrangian and the off-shell Noether identities satisfied by diffeomorphisms generated by arbitrary vector fields, local SO(n) or SO(n−1,1) transformations, ‘improved diffeomorphisms’, and the ‘generalization of local translations’ of the orthonormal frame and the connection. A remarkable aspect of our approach is that we do not use Noether’s theorem in its direct form. By construction, the currents are off-shell conserved and lead naturally to the definition of off-shell Noether charges. We also study what we call the ‘half off-shell’ case for both Palatini and Holst Lagrangians. In particular, we find that the resulting diffeomorphism and local SO(3,1) or SO(4) off-shell Noether currents and potentials for the Holst Lagrangian generically depend on the Immirzi parameter, which holds even in the ‘half off-shell’ and on-shell cases. We also study Killing vector fields in the ‘half off-shell’ and on-shell cases. The current theoretical framework is illustrated for the ‘half off-shell’ case in static spherically symmetric and Friedmann–Lemaitre–Robertson–Walker spacetimes in four dimensions.


Author(s):  
Talat Körpınar ◽  
Yasin Ünlütürk

AbstractIn this research, we study bienergy and biangles of moving particles lying on the surface of Lorentzian 3-space by using their energy and angle values. We present the geometrical characterization of bienergy of the particle in Darboux vector fields depending on surface. We also give the relationship between bienergy of the surface curve and bienergy of the elastic surface curve. We conclude the paper by providing bienergy-curve graphics for different cases.


Sign in / Sign up

Export Citation Format

Share Document