Particle swarm optimization technique for the optimal design of shell and tube heat exchangers

Author(s):  
Sandip Kumar Lahiri ◽  
Nadeem Muhammed Khalfe ◽  
Shiv Kumar Wadhwa

Abstract Owing to the wide utilization of heat exchangers in industrial processes, their cost minimization is an important target for both designers and users. Traditional design approaches are based on iterative procedures which gradually change the design and geometric parameters until given heat duty and set of geometric and operational constraints are satisfied.Although well proven, this kind of approach is time consuming and may not lead to cost effective design. The present study explores the use of non-traditional optimization technique: calledParticle swarm optimization (PSO), for design optimization of shell and tube heat exchangers from economic point of view. The optimization procedure involves the selection of the major geometric parameters such as tube diameters, tubelength, bafflespacing, number of tube passes, tubelayout, type of head, baffle cutetc and minimization of total annual cost is considered as design target. The presented PSO technique is conceptually simple, has only a few parameters and is easy to implement.Furthermore, the PSO algorithm explores the good quality solutions quickly, giving the designer more degrees of freedom in the final choice with respect to traditional methods. The methodology takes into account the geometric and operational constraints typically recommended by design codes. Three different case studies are presented to demonstrate the effectiveness and accuracy of proposed algorithm . The PSO method leads to a design of a heat exchanger with a reduced cost of heat exchanger as compare to cost obtained by previously reported GA approach.

2015 ◽  
Vol 10 (2) ◽  
pp. 81-96 ◽  
Author(s):  
Sandip K. Lahiri ◽  
Nadeem Muhammed Khalfe

Abstract Owing to the wide utilization of shell and tube heat exchangers (STHEs) in industrial processes, their cost minimization is an important target for both designers and users. Traditional design approaches are based on iterative procedures which gradually change the design and geometric parameters until satisfying a given heat duty and set of geometric and operational constraints. Although well proven, this kind of approach is time-consuming and may not lead to cost-effective design. The present study explores the use of non-traditional optimization technique called hybrid particle swarm optimization (PSO) and ant colony optimization (ACO), for design optimization of STHEs from economic point of view. The PSO applies for global optimization and ant colony approach is employed to update positions of particles to attain rapidly the feasible solution space. ACO works as a local search, wherein ants apply pheromone-guided mechanism to update the positions found by the particles in the earlier stage. The optimization procedure involves the selection of the major geometric parameters such as tube diameters, tube length, baffle spacing, number of tube passes, tube layout, type of head, baffle cut, etc. and minimization of total annual cost is considered as design target. The methodology takes into account the geometric and operational constraints typically recommended by design codes. Three different case studies are presented to demonstrate the effectiveness and accuracy of proposed algorithm. The examples analyzed show that the hybrid PSO and ACO algorithm provides a valuable tool for optimal design of heat exchanger. The hybrid PSO and ACO approach is able to reduce the total cost of heat exchanger as compare to cost obtained by previously reported genetic algorithm (GA) approach. The result comparisons with particle swarm optimizer and other optimization algorithms (GA) demonstrate the effectiveness of the presented method.


2011 ◽  
Vol 17 (4) ◽  
pp. 409-427 ◽  
Author(s):  
Nadeem Khalfe ◽  
Kumar Lahiri ◽  
Kumar Wadhwa

Owing to the wide utilization of heat exchangers in industrial processes, their cost minimization is an important target for both designers and users. Traditional design approaches are based on iterative procedures which gradually change the design and geometric parameters to satisfy a given heat duty and constraints. Although well proven, this kind of approach is time consuming and may not lead to cost effective design as no cost criteria are explicitly accounted for. The present study explores the use of nontraditional optimization technique: called simulated annealing (SA), for design optimization of shell and tube heat exchangers from economic point of view. The optimization procedure involves the selection of the major geometric parameters such as tube diameters, tube length, baffle spacing, number of tube passes, tube layout, type of head, baffle cut etc and minimization of total annual cost is considered as design target. The presented simulated annealing technique is simple in concept, few in parameters and easy for implementations. Furthermore, the SA algorithm explores the good quality solutions quickly, giving the designer more degrees of freedom in the final choice with respect to traditional methods. The methodology takes into account the geometric and operational constraints typically recommended by design codes. Three different case studies are presented to demonstrate the effectiveness and accuracy of proposed algorithm. The SA approach is able to reduce the total cost of heat exchanger as compare to cost obtained by previously reported GA approach.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amin Farzin ◽  
Mehrangiz Ghazi ◽  
Amir Farhang Sotoodeh ◽  
Mohammad Nikian

Purpose The purpose of this study is to provide a method for designing the shell and tube heat exchangers and examine the total annual cost of heat exchanger networks from the economic view based on the careful design of equipment. Design/methodology/approach Accurate evaluation of heat exchanger networks performance depends on detailed models of heat exchangers design. The simulations variables include nine design variables such as flow direction determination of each of the two fluids, number of tubes, number of tube passes, length of tubes, the arrangement of tubes, size and percentage of baffle cut, tube diameter and tube pitch. The optimal designing of the heat exchangers is based on geometrical and hydraulic modeling and using a hybrid genetic particle swarm optimization algorithm (PSO-GA) technique. In this paper, optimization and minimization of the total annual cost of heat exchanger networks are considered as the objective function. Findings In this study, a fast and reliable method is used to simulate, optimize design parameters and evaluate heat transfer enhancement. PSO-GA algorithms have been used to minimize the total annual cost, which includes investment costs of heat exchangers and pumps, operating costs (pumping) and energy costs for utilities. Three case studies of four, six and nine streams are selected to demonstrate the accuracy of the method. Reductions of 0.55%, 23.5% and 14.78% are obtained in total annual cost for the selected streams, respectively. Originality/value In the present study, a reliable method is used to simulate and optimize design parameters and the economic optimization of the heat exchanger networks. Taking into account the importance of shell and tube heat exchangers in industrial applications and the complexity in their geometry, the PSO-GA methodology is adopted to obtain an optimal geometric configuration. The total annual cost is chosen as the objective function. Applying this technique to case studies demonstrates its ability to accurately design heat exchangers to optimize the objective function of the heat exchanger networks by giving the detail of design.


2021 ◽  
Author(s):  
praveen math

Abstract Shell and Tube heat exchangers are having special importance in boilers, oil coolers, condensers, pre-heaters. They are also widely used in process applications as well as the refrigeration and air conditioning industry. The robustness and medium weighted shape of Shell and Tube heat exchangers make them well suited for high pressure operations. The aim of this study is to experiment, validate and to provide design suggestion to optimize the shell and tube heat exchanger (STHE). The heat exchanger is made of acrylic material with 2 baffles and 7 tubes made of stainless steel. Hot fluid flows inside the tube and cold fluid flows over the tube in the shell. 4 K-type thermocouples were used to read the hot and cold fluids inlet and outlet temperatures. Experiments were carried out for various combinations of hot and cold water flow rates with different hot water inlet temperatures. The flow conditions are limited to the lab size model of the experimental setup. A commercial CFD code was used to study the thermal and hydraulic flow field inside the shell and tubes. CFD methodology is developed to appropriately represent the flow physics and the procedure is validated with the experimental results. Turbulent flow in tube side is observed for all flow conditions, while the shell side has laminar flow except for extreme hot water temperatures. Hence transition k-kl-omega model was used to predict the flow better for transition cases. Realizable k- epsilon model with non-equilibrium wall function was used for turbulent cases. Temperature and velocity profiles are examined in detail and observed that the flow remains almost uniform to the tubes thus limiting heat transfer. Approximately 2/3 rd of the shell side flow does not surround the tubes due to biased flow contributing to reduced overall heat transfer and increased pressure loss. On the basis of these findings an attempt has been made to enhance the heat transfer by inducing turbulence in the shel l side flow. The two baffles were rotated in opposite direction to each other to achieve more circulation in the shell side flow and provide more contact with tube surface. Various positions of the baffles were simulated and studied using CFD analysis and th e results are summarized with respect to heat transfer and pressure loss.


Author(s):  
Jiten Makadia ◽  
C.D. Sankhavara

Swarm Intelligence algorithms like PSO (Particle Swarm Optimization), ACO (Ant Colony Optimization), ABC (Artificial Bee Colony), Glow-worm swarm Optimization, etc. have been utilized by researchers for solving optimization problems. This work presents the application of a novel modified EHO (Elephant Herding Optimization) for cost optimization of shell and tube heat exchanger. A comparison of the results obtained by EHO in two benchmark problems shows that it is superior to those obtained with genetic algorithm and particle swarm optimization. The overall cost reduction is 13.3 % and 9.68% for both the benchmark problem compared to PSO. Results indicate that EHO can be effectively utilized for solving real-life optimization problems.


Author(s):  
Xinyi Li ◽  
Ting Ma ◽  
Qiuwang Wang

It is a recognized hard task for the traditional thermal design of compact heat exchangers to obtain the optimal geometric parameters efficiently and effectively, owing to its complex trial-and-error process. In response to this issue, a simplified conjugate-gradient method (SCGM) combined with a sequential unconstrained minimization technique (SUMT) as a favorable optimization technique is incorporated with the traditional thermal design in this study, and then the key geometric parameters of fin-and-tube heat exchangers (FTHEs) are investigated and optimized successfully. In this method, the minimum total weight of FTHEs as the final objective is discussed, involving two geometric parameters, diameter of tube and height of shape as search variables. Aiming to minimize the objective function, SCGM is introduced to the SUMT to update the search variables continually with the fixed search steps and the search directions. Meanwhile, with the known geometric parameters from the SUMT, the log-mean temperature difference method (LMTD) is applied to determine the heat transfer area under the combined structure sizes for a given heat duty. Additionally, optimization results for three different heat duty is discussed in this work. The results show that it is effective to obtain the optimal sets of geometric parameters of FTHEs by the present method, and there are some guidance values for the thermal designs of compact heat exchangers.


2019 ◽  
Vol 17 (2) ◽  
pp. 414-433 ◽  
Author(s):  
Habib Karimi ◽  
Hossein Ahmadi Danesh Ashtiani ◽  
Cyrus Aghanajafi

Purpose This paper aims to examine total annual cost from economic view mixed materials heat exchangers based on three optimization algorithms. This study compares the use of three optimization algorithms in the design of economic optimization shell and tube mixed material heat exchangers. Design/methodology/approach A shell and tube mixed materials heat exchanger optimization design approach is expanded based on the total annual cost measured by dividing the costs of the heat exchanger to area of surface and power consumption. In this study, optimization and minimization of the total annual cost is considered as the objective function. There are three types of exchangers: cheap, expensive and mixed. Mixed materials are used in corrosive flows in the heat exchanger network. The present study explores the use of three optimization techniques, namely, hybrid genetic-particle swarm optimization, shuffled frog leaping algorithm techniques and ant colony optimization. Findings There are three parameters as decision variables such as tube outer diameter, shell diameter and central baffle spacing considered for optimization. Results have been compared with the findings of previous studies to demonstrate the accuracy of algorithms. Originality/value The present study explores the use of three optimization techniques, namely, hybrid genetic-particle swarm optimization, shuffled frog leaping algorithm techniques and ant colony optimization. This study has demonstrated successful application of each technique for the optimal design of a mixed material shell and tube heat exchanger from the economic view point.


1973 ◽  
Vol 95 (1) ◽  
pp. 145-150 ◽  
Author(s):  
L. J. Wolf ◽  
R. M. Mains

Expansion joints of the style most commonly used in shell and tube heat exchangers were studied analytically and experimentally in the elastic range. A method of computing stresses and deformations for pressure and expansion loadings is demonstrated. Strain-gage tests show the analytical method to be accurate.


Sign in / Sign up

Export Citation Format

Share Document