5. Concrete and Asphalt: Geographies of Environmental Disruption in Modern Italy

2020 ◽  
pp. 154-200
2019 ◽  
Vol 47 (1) ◽  
pp. 275-303 ◽  
Author(s):  
Matthew E. Clapham ◽  
Paul R. Renne

Flood basalts were Earth's largest volcanic episodes that, along with related intrusions, were often emplaced rapidly and coincided with environmental disruption: oceanic anoxic events, hyperthermals, and mass extinction events. Volatile emissions, both from magmatic degassing and vaporized from surrounding rock, triggered short-term cooling and longer-term warming, ocean acidification, and deoxygenation. The magnitude of biological extinction varied considerably, from small events affecting only select groups to the largest extinction of the Phanerozoic, with less-active organisms and those with less-developed respiratory physiology faring especially poorly. The disparate environmental and biological outcomes of different flood basalt events may at first order be explained by variations in the rate of volatile release modulated by longer trends in ocean carbon cycle buffering and the composition of marine ecosystems. Assessing volatile release, environmental change, and biological extinction at finer temporal resolution should be a top priority to refine ancient hyperthermals as analogs for anthropogenic climate change. ▪ Flood basalts, the largest volcanic events in Earth history, triggered dramatic environmental changes on land and in the oceans. ▪ Rapid volcanic carbon emissions led to ocean warming, acidification, and deoxygenation that often caused widespread animal extinctions. ▪ Animal physiology played a key role in survival during flood basalt extinctions, with reef builders such as corals being especially vulnerable. ▪ The rate and duration of volcanic carbon emission controlled the type of environmental disruption and the severity of biological extinction.


2000 ◽  
Vol 6 ◽  
pp. 209-232 ◽  
Author(s):  
Scott L. Wing

Flowering plants are a classic example of a group arising late in Earth history and yet achieving very high diversity, abundance, and ecological and morphological variety in a great array of environments and climatic conditions on all continents. Thus, the success of flowering plants raises basic questions about how new lineages become inserted into existing terrestrial ecosystems. To what degree did flowering plants replace older lineages competitively, and to what extent did their expansion depend on large-scale environmental disruption or extinction of older groups? Is the higher taxonomic diversity of flowering plants a consequence of higher rates of speciation, lower rates of extinction, or both? Have flowering plants expanded the total area and range of habitats occupied by terrestrial vegetation? What were the effects of the diversification and spread of flowering plants on the structure of habitats and the types of resources available to terrestrial heterotrophs?


2000 ◽  
Vol 27 (18) ◽  
pp. 2957-2960 ◽  
Author(s):  
Håkan Grudd ◽  
Keith R. Briffa ◽  
Björn E. Gunnarson ◽  
Hans W. Linderholm

Sign in / Sign up

Export Citation Format

Share Document