flood basalts
Recently Published Documents


TOTAL DOCUMENTS

463
(FIVE YEARS 88)

H-INDEX

70
(FIVE YEARS 5)

Author(s):  
Yingchao Xu ◽  
Liandi Zheng ◽  
Zhenyu Yang ◽  
Ya-Bo Tong ◽  
Bin Wang ◽  
...  

The duration of the eruption of the Emeishan large igneous province is hotly debated. We conducted a magnetostratigraphic and geochronological study of the core area of the large igneous province in the Binchuan area of Yunnan Province, southwestern China, in order to constrain the duration of the eruption. The results of detailed thermal demagnetization experiments revealed two remanent magnetic components from the volcanic rocks of 11 composite sections. A low-temperature component separated below 300 °C is interpreted as a recent viscous remanence. Additionally, reliable characteristic remanent magnetizations were revealed above 400 °C, with unblocking temperatures up to 580−680 °C, which passed the fold test and record three magnetozones. Zircons from the felsic ignimbrites exposed in the final stage of the mafic volcanism are dated to 258.2 ± 0.7 Ma (n = 15; mean square of weighted deviates = 1.3) by sensitive high-resolution ion microprobe. Stratigraphic and magnetostratigraphic correlations of the Emeishan basalts in the Binchuan sections indicate that the eruption of the mafic rocks of the Emeishan large igneous province can be clearly divided into early (reverse polarity subzone), middle (normal polarity subzone), and late (reverse polarity subzone) stages, with a total duration of less than 1.7 m.y. (260.8−259.1 Ma). However, by combining this chronology with previously reported conodont biostratigraphic results from locations around the Emeishan large igneous province, and comparing the dominant normal-reverse polarity sequence in the Emeishan large igneous province with the geomagnetic polarity time scale, we obtain a much shorter duration of the main eruptive stage of <0.8 m.y. (260.4−259.6 Ma). About three quarters of the basalts of the Emeishan large igneous province record have a normal polarity and erupted within 0.4 m.y., while the other quarter, mainly distributed in the central zone, shows a reverse polarity and much shorter duration. Given the short duration of the eruption, gas volatiles would have been released into the atmosphere at high rates, which might provide a causal link between the rapid eruption and the end-Guadalupian mass extinction. Before the mantle plume eruption, localized eruptions probably occurred. After eruption of the mafic Emeishan flood basalts, an acid volcanic eruption occurred in the early Wuchiapingian, which was sporadically distributed in the Emeishan large igneous province.


2021 ◽  
Author(s):  
Yingchao Xu ◽  
Zhenyu Yang ◽  
et al.

Table S1: The characteristic remanent magnetization for the samples of Emeishan basalts from the Binchuan area; Table S2: SHRIMP zircon U-Pb analytical data for sample DY65-7 of this study.


2021 ◽  
Author(s):  
Yingchao Xu ◽  
Zhenyu Yang ◽  
et al.

Table S1: The characteristic remanent magnetization for the samples of Emeishan basalts from the Binchuan area; Table S2: SHRIMP zircon U-Pb analytical data for sample DY65-7 of this study.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chenguang Zhang ◽  
Renyu Zeng ◽  
Changming Li ◽  
Jian Jiang ◽  
Tianguo Wang ◽  
...  

High-Ti (Ti/Y) flood basalts are widely distributed in the Late Permian Emeishan large igneous province (LIP), SW China, and their spatial distribution and genetic mechanism are important to reveal the role of plume-lithosphere interactions in the LIP origin. Western Guangxi is located on the eastern edge of Emeishan LIP. To explore the genesis of the high-Ti basalt in western Guangxi and any genetic link with the Emeishan LIP, we performed whole-rock geochemical and Sr-Nd isotope and zircon U-Pb-Hf isotope analyses on the Longlin basalts from western Guangxi. The results indicate that the Longlin basalt from Tongdeng area has relatively high SiO2 but low MgO and TFe2O3 contents. The rocks have zircon εHf(t) = −0.42 to 6.41, whole-rock (87Sr/86Sr)i = 0.707167–0.707345, and εNd(t) = −2.5 to −2.14. In contrast, the Longlin basalt from Zhoudong area has relatively low SiO2 but high MgO and TFe2O3 contents. The rocks have whole-rock (87Sr/86Sr)i = 0.706181–0.706191 and εNd(t) = −0.57 to 0.69. Four Longlin basalt samples display LREE enrichments and HREE depletions, and with indistinct δEu and δCe anomalies. LA-ICP-MS zircon U-Pb dating on three Longlin basalt samples (from different localities) yielded consistent weighted average age of 257.9 ± 2.6 Ma (MSWD = 0.55), 259.5 ± 0.75 Ma (MSWD = 3.0), and 256.7 ± 2.0 Ma (MSWD = 0.68), indicating a Late Permian emplacement. Considering the similar age and geochemical features between the Longlin basalt and Emeishan flood basalts, we interpret that the former is spatially, and temporally associated with the Emeishan LIP. Geochemical features show that the high-Ti basalts in western Guangxi resemble Deccan-type continental flood basalts (CFBs), which were derived by decompression melting of the mantle plume. Combined with previous geochemical studies, we suggest that the difference in Ti content and Ti/Y ratio in CFBs are related to the depth and melting degree of mantle source, in which high-Ti features may have been linked to low degree of partial melting in the deep mantle.


Sign in / Sign up

Export Citation Format

Share Document