9. Quantum Fields

2000 ◽  
pp. 231-254
Keyword(s):  
Author(s):  
Richard Healey

Novel quantum concepts acquire content not by representing new beables but through material-inferential relations between claims about them and other claims. Acceptance of quantum theory modifies other concepts in accordance with a pragmatist inferentialist account of how claims acquire content. Quantum theory itself introduces no new beables, but accepting it affects the content of claims about classical magnitudes and other beables unknown to classical physics: the content of a magnitude claim about a physical object is a function of its physical context in a way that eludes standard pragmatics but may be modeled by decoherence. Leggett’s proposed test of macro-realism illustrates this mutation of conceptual content. Quantum fields are not beables but assumables of a quantum theory we use to make claims about particles and non-quantum fields whose denotational content may also be certified by models of decoherence.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Ivan M. Burbano ◽  
T. Rick Perche ◽  
Bruno de S. L. Torres

Abstract Particle detectors are an ubiquitous tool for probing quantum fields in the context of relativistic quantum information (RQI). We formulate the Unruh-DeWitt (UDW) particle detector model in terms of the path integral formalism. The formulation is able to recover the results of the model in general globally hyperbolic spacetimes and for arbitrary detector trajectories. Integrating out the detector’s degrees of freedom yields a line defect that allows one to express the transition probability in terms of Feynman diagrams. Inspired by the light-matter interaction, we propose a gauge invariant detector model whose associated line defect is related to the derivative of a Wilson line. This is another instance where nonlocal operators in gauge theories can be interpreted as physical probes for quantum fields.


1972 ◽  
Vol 13 (6) ◽  
pp. 821-827 ◽  
Author(s):  
Gerhard C. Hegerfeldt
Keyword(s):  

2021 ◽  
Vol 103 (4) ◽  
Author(s):  
E. T. Akhmedov ◽  
A. A. Artemev ◽  
I. V. Kochergin

2010 ◽  
Vol 82 (2) ◽  
Author(s):  
Prasad Basu ◽  
Rahul Srivastava ◽  
Sachindeo Vaidya

2008 ◽  
Vol 77 (2) ◽  
Author(s):  
Paolo Aschieri ◽  
Fedele Lizzi ◽  
Patrizia Vitale

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
José Velhinho

This review is devoted to measure theoretical methods in the canonical quantization of scalar field theories. We present in some detail the canonical quantization of the free scalar field. We study the measures associated with the free fields and present two characterizations of the support of these measures. The first characterization concerns local properties of the quantum fields, whereas for the second one we introduce a sequence of variables that test the field behaviour at large distances, thus allowing distinguishing between the typical quantum fields associated with different values of the mass.


Sign in / Sign up

Export Citation Format

Share Document