Quantum fields can provide enough energy density to close the universe

1986 ◽  
Vol 169 (1) ◽  
pp. 31-35 ◽  
Author(s):  
Paul R. Anderson
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ali Osman Yılmaz ◽  
Ertan Güdekli

AbstractWe investigate Friedmann–Lamaitre–Robertson–Walker (FLRW) models with modified Chaplygin gas and cosmological constant, using dynamical system methods. We assume $$p=(\gamma -1)\mu -\dfrac{A}{\mu ^\alpha }$$ p = ( γ - 1 ) μ - A μ α as equation of state where $$\mu$$ μ is the matter-energy density, p is the pressure, $$\alpha$$ α is a parameter which can take on values $$0<\alpha \le 1$$ 0 < α ≤ 1 as well as A and $$\gamma$$ γ are positive constants. We draw the state spaces and analyze the nature of the singularity at the beginning, as well as the fate of the universe in the far future. In particular, we address the question whether there is a solution which is stable for all the cases.


2021 ◽  
pp. 2150114
Author(s):  
Manuel Urueña Palomo ◽  
Fernando Pérez Lara

The vacuum catastrophe results from the disagreement between the theoretical value of the energy density of the vacuum in quantum field theory and the estimated one observed in cosmology. In a similar attempt in which the ultraviolet catastrophe was solved, we search for the value of the cosmological constant by brute-force through computation. We explore combinations of the fundamental constants in physics performing a dimensional analysis, in search of an equation resulting in the measured energy density of the vacuum or cosmological constant that is assumed to cause the accelerated expansion of the universe.


Author(s):  
Vipin Kumar Sharma

The main motivation to write this article is to relate the cosmology and topology in order to gain some insight into the topological signatures of the Standard model of Universe. The theory of General Relativity as given by Einstein only describes the local geometry of space but not global, hence leaves the possibility to explore the topology of the space (simply- or multi-connected). By expressing the cosmological model in trms of energy density parameters, we attempt to understand the geometry of spacetime. This is followed by a discussion on the possibility to detect the signatures of topology of space imprinted on the Cosmic Microwave Background (CMB).


2019 ◽  
Vol 28 (14) ◽  
pp. 1944002 ◽  
Author(s):  
Spyros Basilakos ◽  
Nick E. Mavromatos ◽  
Joan Solà Peracaula

We present a string-based picture of the cosmological evolution in which (CP-violating) gravitational anomalies acting during the inflationary phase of the universe cause the vacuum energy density to “run” with the effective Hubble parameter squared, [Formula: see text], thanks to the axion field of the bosonic string multiplet. This leads to baryogenesis through leptogenesis with massive right-handed neutrinos. The generation of chiral matter after inflation helps in cancelling the anomalies in the observable radiation- and matter-dominated eras. The present era inherits the same “running vacuum” structure triggered during the inflationary time by the axion field. The current dark energy is thus predicted to be mildly dynamical, and dark matter should be made of axions. Paraphrasing Carl Sagan [ https://www.goodreads.com/author/quotes/10538.Carl_Sagan .]: we are all anomalously made from starstuff.


2018 ◽  
Vol 33 (29) ◽  
pp. 1850181 ◽  
Author(s):  
Saleh Hamdan ◽  
James Unwin

We highlight the general scenario of dark matter freeze-out while the energy density of the universe is dominated by a decoupled non-relativistic species. Decoupling during matter domination changes the freeze-out dynamics, since the Hubble rate is parametrically different for matter and radiation domination. Furthermore, for successful Big Bang Nucleosynthesis the state dominating the early universe energy density must decay, this dilutes (or repopulates) the dark matter. As a result, the masses and couplings required to reproduce the observed dark matter relic density can differ significantly from radiation-dominated freeze-out.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Prasenjit Paul ◽  
Rikpratik Sengupta

It was first observed at the end of the last century that the universe is presently accelerating. Ever since, there have been several attempts to explain this observation theoretically. There are two possible approaches. The more conventional one is to modify the matter part of the Einstein field equations, and the second one is to modify the geometry part. We shall consider two phenomenological models based on the former, more conventional approach within the context of general relativity. The phenomenological models in this paper consider a Λ term firstly a function of a¨/a and secondly a function of ρ, where a and ρ are the scale factor and matter energy density, respectively. Constraining the free parameters of the models with the latest observational data gives satisfactory values of parameters as considered by us initially. Without any field theoretic interpretation, we explain the recent observations with a dynamical cosmological constant.


2015 ◽  
Vol 3 (2) ◽  
pp. 123
Author(s):  
Satya Seshavatharam UV ◽  
Terry Tatum E ◽  
Lakshminarayana S

<p>From the beginning of Planck scale to the scale of the current Hubble radius: 1) Considering the relation, subjects of black holes and cosmology, both can be integrated into evolving black hole cosmology and cosmic horizon problem can be relinquished. 2) Considering ‘continuous light speed expansion’ of the cosmic black hole horizon, attributed results of cosmic inflation can be re-addressed completely. If ‘nature’ of the universe is to expand with light speed, then there is no need to think about the existence of currently believed ‘Lambda term’. In addition, ‘light speed expanding cosmic space’ can be called as ‘flat space’. 3) Considering the ratio of gravitational self-energy density and thermal energy density to be  (where  is the Planck scale temperature, and is cosmic temperature at any time). Quantum gravity can be implemented in low energy scale current cosmological observations. Considering the above concepts, currently believed dark matter energy density and visible matter energy density both can be accurately fitted with the ratio of current gravitational self-energy density and current thermal energy density. To proceed further, the authors would like to highlight the following three points: 1) Deep-space red shift non-linearity can be expected to be connected with cosmological gravitational and relativistic effects and cannot be considered as a major criterion of cosmic evolution. 2) Until one finds solid applications of super luminal speeds and super luminal expansions in other areas of physics like astrophysics and nuclear astrophysics, currently believed ‘cosmic inflation’ cannot be considered as a real physical model and alternative proposals of inflation can be given a chance in exploring the evolving history of the universe. 3) Implementing Planck scale in current paradigm of cosmological observations and standard cosmology is very challenging and is inevitable.</p>


2006 ◽  
Vol 21 (15) ◽  
pp. 1241-1248 ◽  
Author(s):  
M. ARIK ◽  
M. C. ÇALIK

By using a linearized non-vacuum late time solution in Brans–Dicke cosmology, we account for the 75% dark energy contribution but not for approximately 23% dark matter contribution to the present day energy density of the universe.


2009 ◽  
Vol 24 (18n19) ◽  
pp. 3426-3436 ◽  
Author(s):  
MARTIN L. PERL

Over the last decade, astronomical observations show that the acceleration of the expansion of the universe is greater than expected from our understanding of conventional general relativity, the mass density of the visible universe, the size of the visible universe and other astronomical measurements. The additional expansion has been attributed to a variety of phenomenon that have been given the general name of dark energy. Dark energy in the universe seems to comprise a majority of the energy in the visible universe amounting to about three times the total mass energy. But locally the dark energy density is very small. However it is not zero. In this paper I describe the work of others and myself on the question of whether dark energy density can be directly detected. This is a work-in-progress and I have no answer at present.


Sign in / Sign up

Export Citation Format

Share Document