Chapter 5. Subsurface Rupture Structure of the M7.1 Darfield and M6.3 Christchurch Earthquake Sequence Viewed with Fault-Zone Trapped Waves

Author(s):  
Yong-Gang Li ◽  
Gregory De Pascale ◽  
Mark Quigley ◽  
Darren Gravely
2004 ◽  
Vol 31 (12) ◽  
pp. n/a-n/a ◽  
Author(s):  
Yong-Gang Li ◽  
John E. Vidale ◽  
Elizabeth S. Cochran

2005 ◽  
Vol 18 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Song-lin Li ◽  
Xian-kang Zhang ◽  
Ji-chang Fan

1998 ◽  
Vol 103 (B4) ◽  
pp. 7247-7263 ◽  
Author(s):  
Yong-Gang Li ◽  
Keiiti Aki ◽  
John E. Vidale ◽  
Mark G. Alvarez

2013 ◽  
Vol 4 (3) ◽  
pp. 48-52
Author(s):  
Sun Yi ◽  
Lai Xiaoling

2021 ◽  
Vol 9 ◽  
Author(s):  
Min Zhao ◽  
Feng Long ◽  
Guixi Yi ◽  
MingJian Liang ◽  
Jiangtao Xie ◽  
...  

The 3 February 2020 MS 5.1 Qingbaijiang earthquake, southwestern China, is the closest recorded MS ≥ 5.0 event to downtown Chengdu City to date, with an epicentral distance of only 38 km. Here we analyze seismic data from the Sichuan and Chengdu regional seismic networks, and employ a multi-stage location method to relocate the earthquakes that have occurred along the central and northern segments of the Longquanshan fault zone since 2009, including the MS 5.1 Qingbaijiang earthquake sequence, to investigate the seismogenic structure of the region. The relocation results indicate that the seismicity along the central and northern segments of the Longquanshan fault zone has occurred mainly along the eastern branch since 2009, with the hypocentral distribution along a vertical cross-section illustrating a steep, NW-dipping parallel imbricate structure. The terminating depth of the eastern branch is about 12 km. The distribution of the MS 5.1 Qingbaijiang earthquake sequence is along the NE–SW-striking Longquanshan fault zone. The aftershock focal depths are in the 3–6 km range, with the mainshock located at 104.475°E, 30.73°N. Its initial rupture depth of 5.2 km indicates that the earthquake occurred above the shallow decollement layer of the upper crust in this region. The hypocentral distribution along the long axis of the aftershock area highlights that this earthquake sequence occurred along a fault dipping at 56° to the NW. Our surface projection of the inferred fault plane places it near the eastern branch of the Longquanshan fault zone. We infer the MS 5.1 mainshock to be a thrust faulting event based on the focal mechanism solution via the cut-and-paste waveform inversion method, with strike/dip/rake parameters of 22°/36°/91° and 200°/54°/89° obtained for nodal planes I and II, respectively. We identify that the seismogenic fault of the MS 5.1 Qingbaijiang earthquake lies along the eastern branch of the Longquanshan fault zone, and nodal plane II represents the coseismic rupture plane, based on a joint analysis of the event relocation results, mainshock focal mechanism, and regional geological information. Our study provides vital information for assessing the seismic hazard of the Longquanshan fault zone near Chengdu City.


1990 ◽  
Vol 80 (5) ◽  
pp. 1245-1271 ◽  
Author(s):  
Y.-G. Li ◽  
P. C. Leary

Abstract Two instances of fault zone trapped seismic waves have been observed. At an active normal fault in crystalline rock near Oroville in northern California, trapped waves were excited with a surface source and recorded at five near-fault borehole depths with an oriented three-component borehole seismic sonde. At Parkfield, California, a borehole seismometer at Middle Mountain recorded at least two instances of the fundamental and first higher mode seismic waves of the San Andreas fault zone. At Oroville recorded particle motions indicate the presence of both Love and Rayleigh normal modes. The Love-wave dispersion relation derived for an idealized wave guide with velocity structure determined by body-wave travel-time inversion yields seismograms of the fundamental mode that are consistent with the observed Love-wave amplitude and frequency. Applying a similar velocity model to the Parkfield observations, we obtain a good fit to the trapped wavefield amplitude, frequency, dispersion, and mode time separation for an asymmetric San Andreas fault zone structure—a high-velocity half-space to the southwest, a low-velocity fault zone, a transition zone containing the borehole seismometer, and an intermediate velocity half-space to the northeast. In the Parkfield borehole seismic data set, the locations (depth and offset normal to fault plane) of natural seismic events which do or do not excite trapped waves are roughly consistent with our model of the low velocity zone. We conclude that it is feasible to obtain near-surface borehole records of fault zone trapped waves. Because trapped modes are excited only by events close to the fault zone proper—thereby fixing these events in space relative to the fault—a wider investigation of possible trapped mode waveforms recorded by a borehole seismic network could lead to a much refined body-wave/tomographic velocity model of the fault and to a weighting of events as a function of offset from the fault plane. It is an open question whether near-surface sensors exist in a stable enough seismic environment to use trapped modes as an earth monitoring device.


Sign in / Sign up

Export Citation Format

Share Document