Length Functions on Subgroups in Finitely Presented Groups

Author(s):  
A. Yu. Olshanskii ◽  
M. V. Sapir
2004 ◽  
Vol 14 (04) ◽  
pp. 409-429 ◽  
Author(s):  
JEAN-CAMILLE BIRGET

We give some connections between various functions defined on finitely presented groups (isoperimetric, isodiametric, Todd–Coxeter radius, filling length functions, etc.), and we study the relation between those functions and the computational complexity of the word problem (deterministic time, nondeterministic time, symmetric space). We show that the isoperimetric function can always be linearly decreased (unless it is the identity map). We present a new proof of the Double Exponential Inequality, based on context-free languages.


1968 ◽  
Vol 33 (2) ◽  
pp. 296-297
Author(s):  
J. C. Shepherdson

1991 ◽  
Vol 01 (03) ◽  
pp. 339-351
Author(s):  
ROBERT H. GILMAN

This paper is concerned with computation in finitely presented groups. We discuss a procedure for showing that a finite presentation presents a group with a free subgroup of finite index, and we give methods for solving various problems in such groups. Our procedure works by constructing a particular kind of partial groupoid whose universal group is isomorphic to the group presented. When the procedure succeeds, the partial groupoid can be used as an aid to computation in the group.


2017 ◽  
Vol 11 (1) ◽  
pp. 291-310
Author(s):  
Daniele Ettore Otera ◽  
Valentin Poénaru

Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 282 ◽  
Author(s):  
Andrea Coladangelo

We describe a two-player non-local game, with a fixed small number of questions and answers, such that an ϵ-close to optimal strategy requires an entangled state of dimension 2Ω(ϵ−1/8). Our non-local game is inspired by the three-player non-local game of Ji, Leung and Vidick \cite{ji2018three}. It reduces the number of players from three to two, as well as the question and answer set sizes. Moreover, it provides an (arguably) elementary proof of the non-closure of the set of quantum correlations, based on embezzlement and self-testing. In contrast, previous proofs \cite{slofstra2019set, dykema2017non, musat2018non} involved representation theoretic machinery for finitely-presented groups and C∗-algebras.


Sign in / Sign up

Export Citation Format

Share Document