scholarly journals Removal of Random Noise in Seismic Data by Time-varying Window-length Time-frequency Peak Filtering

2016 ◽  
Vol 64 (5) ◽  
pp. 1703-1714 ◽  
Author(s):  
Pengjun Yu ◽  
Yue Li ◽  
Hongbo Lin ◽  
Ning Wu
2013 ◽  
Vol 56 (7) ◽  
pp. 1200-1208 ◽  
Author(s):  
Yue Li ◽  
BaoJun Yang ◽  
HongBo Lin ◽  
HaiTao Ma ◽  
PengFei Nie

Geophysics ◽  
2013 ◽  
Vol 78 (6) ◽  
pp. V229-V237 ◽  
Author(s):  
Hongbo Lin ◽  
Yue Li ◽  
Baojun Yang ◽  
Haitao Ma

Time-frequency peak filtering (TFPF) may efficiently suppress random noise and hence improve the signal-to-noise ratio. However, the errors are not always satisfactory when applying the TFPF to fast-varying seismic signals. We begin with an error analysis for the TFPF by using the spread factor of the phase and cumulants of noise. This analysis shows that the nonlinear signal component and non-Gaussian random noise lead to the deviation of the pseudo-Wigner-Ville distribution (PWVD) peaks from the instantaneous frequency. The deviation introduces the signal distortion and random oscillations in the result of the TFPF. We propose a weighted reassigned smoothed PWVD with less deviation than PWVD. The proposed method adopts a frequency window to smooth away the residual oscillations in the PWVD, and incorporates a weight function in the reassignment which sharpens the time-frequency distribution for reducing the deviation. Because the weight function is determined by the lateral coherence of seismic data, the smoothed PWVD is assigned to the accurate instantaneous frequency for desired signal components by weighted frequency reassignment. As a result, the TFPF based on the weighted reassigned PWVD (TFPF_WR) can be more effective in suppressing random noise and preserving signal as compared with the TFPF using the PWVD. We test the proposed method on synthetic and field seismic data, and compare it with a wavelet-transform method and [Formula: see text] prediction filter. The results show that the proposed method provides better performance over the other methods in signal preserving under low signal-to-noise ratio.


Geophysics ◽  
2009 ◽  
Vol 74 (1) ◽  
pp. V17-V24 ◽  
Author(s):  
Yang Liu ◽  
Cai Liu ◽  
Dian Wang

Random noise in seismic data affects the signal-to-noise ratio, obscures details, and complicates identification of useful information. We have developed a new method for reducing random, spike-like noise in seismic data. The method is based on a 1D stationary median filter (MF) — the 1D time-varying median filter (TVMF). We design a threshold value that controls the filter window according to characteristics of signal and random, spike-like noise. In view of the relationship between seismic data and the threshold value, we chose median filters with different time-varying filter windows to eliminate random, spike-like noise. When comparing our method with other common methods, e.g., the band-pass filter and stationary MF, we found that the TVMF strikes a balance between eliminating random noise and protecting useful information. We tested the feasibility of our method in reducing seismic random, spike-like noise, on a synthetic dataset. Results of applying the method to seismic land data from Texas demonstrated that the TVMF method is effective in practice.


Sign in / Sign up

Export Citation Format

Share Document