A 1D time-varying median filter for seismic random, spike-like noise elimination

Geophysics ◽  
2009 ◽  
Vol 74 (1) ◽  
pp. V17-V24 ◽  
Author(s):  
Yang Liu ◽  
Cai Liu ◽  
Dian Wang

Random noise in seismic data affects the signal-to-noise ratio, obscures details, and complicates identification of useful information. We have developed a new method for reducing random, spike-like noise in seismic data. The method is based on a 1D stationary median filter (MF) — the 1D time-varying median filter (TVMF). We design a threshold value that controls the filter window according to characteristics of signal and random, spike-like noise. In view of the relationship between seismic data and the threshold value, we chose median filters with different time-varying filter windows to eliminate random, spike-like noise. When comparing our method with other common methods, e.g., the band-pass filter and stationary MF, we found that the TVMF strikes a balance between eliminating random noise and protecting useful information. We tested the feasibility of our method in reducing seismic random, spike-like noise, on a synthetic dataset. Results of applying the method to seismic land data from Texas demonstrated that the TVMF method is effective in practice.

Geophysics ◽  
1975 ◽  
Vol 40 (3) ◽  
pp. 520-526 ◽  
Author(s):  
Z. J. Nikolic

Time‐varying, digital band‐pass filters are extensively used in seismic data processing, since the dominant frequency of reflected signals usually becomes lower and their bandwidth narrower with the passage of time. In routine seismic data processing, time‐varying, digital band‐pass filtering is stepwise.


2020 ◽  
Vol 8 (5) ◽  
pp. 5105-5108

Improving a noisy image is a necessary task when processing digital images. To correct the noise content in the natural image, adding known noise to the image before processing. Therefore, the simulated noise is added to the image just to understand the noise elimination process. A filtering technique that can be applied to eliminate noise from images. After observing the results of the quality measurement values, it is concluded that the filter works best to eliminate image noise in all chosen noise models. Eliminating noise from the image is one of the deep challenges in the area of image processing and computer vision, where the core objective is to estimate the experimental image, smoothing noise from a noise-impure version of the image. Image noise can be caused by unlike intrinsic and extrinsic conditions that are repeated not possible to avoid in realistic state.. Therefore, denoising image plays an vital role in a ample range of aim such as image restoration, visual tracking, image registration, image segmentation and classification, where to obtain image content The original is crucial for performance solid. Noise reduction is the process of eliminating noise from images; Each pixel in the image will change from the original values in a small amount. A noise elimination algorithm is to achieve noise reduction and resource preservation, but due to the limitations of the methods, it is blurred. The noise in different pixels can be correlated or not, because noise modeling is a very difficult task. We observed that the performance of the proposed study's diffuse set and the 3x3, 3x5, 2x3 size filter windows, the adaptive weighted median filter and the median filters and also adaptive fuzzy filter were used to reduce the salt and pepper noise filters and the elimination context noise, the most relevant value Accuracy is recovered. Finally, our results are compared with the image improvement factor (IEF), the mean square error (MSE) and the peak signal-to-noise ratio (PSNR)


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. V105-V110 ◽  
Author(s):  
Cai Liu ◽  
Yang Liu ◽  
Baojun Yang ◽  
Dian Wang ◽  
Jianguo Sun

Random noise lowers the S/N of seismic data and decreases the accuracy of dynamic and static corrections, thus degrading final data quality. A 2D multistage median filter (MLM) that effectively reduces the high-frequency random noise can be implemented by applying 1D median filters (MF) in several directions and choosing a value derived from them to output at the center of the 2D window. The choice of window size depends on the intensity of the random noise and the percentage of the input data samples within the window that contain noise. Synthetic data can be used to demonstrate how to choose the window size. The tendency of the method to damage the signal while reducing the noise can be minimized by optimizing window size and by applying two passes with modest-sized windows as opposed to a single pass with a larger window. Results of using the method on prestack and poststack data from the Songliao basin in China demonstrate that the method is effective at both stages.


2018 ◽  
Vol 154 ◽  
pp. 01046
Author(s):  
Yusuf A Amrulloh ◽  
Jawahir A K Haq

Breath sound recordings from pediatric subjects pose more processing complications. Children, especially the younger ones, are not able to follow instructions to stay calm during recording. This makes their recordings not only contain stationary artifacts but also non-stationary artifacts such as movement of subjects and their heartbeats. Further, the breath sounds from pediatric subjects also have lower magnitude compared to adults. In this work, we proposed to address those problems by developing a method to remove the artifacts from breath sound recordings. We implemented a combination of a Butterworth band pass filter and a discrete wavelet filter. We tested three types of wavelets (Coiflet, Symlet and Daubechies). Ten level decompositions and a set of hard thresholds were implemented in our work. Our results show that our developed method was capable of removing the artifacts significantly while maintaining the signal of interest. The highest signal to noise ratio improvement (10.65dB) was achieved by 32 orders Symlet.


Geophysics ◽  
2019 ◽  
Vol 85 (1) ◽  
pp. V71-V80 ◽  
Author(s):  
Xiong Ma ◽  
Guofa Li ◽  
Hao Li ◽  
Wuyang Yang

Seismic absorption compensation is an important processing approach to mitigate the attenuation effects caused by the intrinsic inelasticity of subsurface media and to enhance seismic resolution. However, conventional absorption compensation approaches ignore the spatial connection along seismic traces, which makes the compensation result vulnerable to high-frequency noise amplification, thus reducing the signal-to-noise ratio (S/N) of the result. To alleviate this issue, we have developed a structurally constrained multichannel absorption compensation (SC-MAC) algorithm. In the cost function of this algorithm, we exploit an [Formula: see text] norm to constrain the reflectivity series and an [Formula: see text] norm to regularize the reflection structural characteristic of the compensation data. The reflection structural characteristic operator, extracted from the observed stacked seismic data, is the core of the structural regularization term. We then solve the cost function of SC-MAC by the alternating direction method of multipliers. Benefiting from the introduction of reflection structure constraint, SC-MAC improves the stability of the compensation result and inhibits the amplification of high-frequency noise. Synthetic and field data examples demonstrate that our proposed method is more robust to random noise and can not only improve the resolution of seismic data, but also maintain the S/N of the compensation seismic data.


2015 ◽  
Vol 77 (7) ◽  
Author(s):  
Mahfuzah Mustafa ◽  
Rul Azreen Mustafar ◽  
Rosdiyana Samad ◽  
Nor Rul Hasma Abdullah ◽  
Norizam Sulaiman

The purpose of this paper is to observe the human brain waves when a person playing video games. The game proposed is Counter Strike (CS) 1.6. There are 30 samples of human brain wave will be collected. The EEG signal will be recorded before playing a game and after playing a game. The threshold value is used to filter the data collected to acquire clean brain waves. Then, extraction of sub-band Alpha and Beta is done by Band-pass filter. Power Spectral Density (PSD) is performed in analysing the brain waves to acquire peak amplitude of the Alpha and Beta sub-band frequencies. The pattern of Alpha and Beta is carried out by using the histogram to observe the relationship between games and mind state of humanity. It is observed that the Beta-band increase and Alpha-band decrease after the samples playing game.  


Geophysics ◽  
2013 ◽  
Vol 78 (6) ◽  
pp. V229-V237 ◽  
Author(s):  
Hongbo Lin ◽  
Yue Li ◽  
Baojun Yang ◽  
Haitao Ma

Time-frequency peak filtering (TFPF) may efficiently suppress random noise and hence improve the signal-to-noise ratio. However, the errors are not always satisfactory when applying the TFPF to fast-varying seismic signals. We begin with an error analysis for the TFPF by using the spread factor of the phase and cumulants of noise. This analysis shows that the nonlinear signal component and non-Gaussian random noise lead to the deviation of the pseudo-Wigner-Ville distribution (PWVD) peaks from the instantaneous frequency. The deviation introduces the signal distortion and random oscillations in the result of the TFPF. We propose a weighted reassigned smoothed PWVD with less deviation than PWVD. The proposed method adopts a frequency window to smooth away the residual oscillations in the PWVD, and incorporates a weight function in the reassignment which sharpens the time-frequency distribution for reducing the deviation. Because the weight function is determined by the lateral coherence of seismic data, the smoothed PWVD is assigned to the accurate instantaneous frequency for desired signal components by weighted frequency reassignment. As a result, the TFPF based on the weighted reassigned PWVD (TFPF_WR) can be more effective in suppressing random noise and preserving signal as compared with the TFPF using the PWVD. We test the proposed method on synthetic and field seismic data, and compare it with a wavelet-transform method and [Formula: see text] prediction filter. The results show that the proposed method provides better performance over the other methods in signal preserving under low signal-to-noise ratio.


Geophysics ◽  
1997 ◽  
Vol 62 (4) ◽  
pp. 1310-1314 ◽  
Author(s):  
Qing Li ◽  
Kris Vasudevan ◽  
Frederick A. Cook

Coherency filtering is a tool used commonly in 2-D seismic processing to isolate desired events from noisy data. It assumes that phase‐coherent signal can be separated from background incoherent noise on the basis of coherency estimates, and coherent noise from coherent signal on the basis of different dips. It is achieved by searching for the maximum coherence direction for each data point of a seismic event and enhancing the event along this direction through stacking; it suppresses the incoherent events along other directions. Foundations for a 2-D coherency filtering algorithm were laid out by several researchers (Neidell and Taner, 1971; McMechan, 1983; Leven and Roy‐Chowdhury, 1984; Kong et al., 1985; Milkereit and Spencer, 1989). Milkereit and Spencer (1989) have applied 2-D coherency filtering successfully to 2-D deep crustal seismic data for the improvement of visualization and interpretation. Work on random noise attenuation using frequency‐space or time‐space prediction filters both in two or three dimensions to increase the signal‐to‐noise ratio of the data can be found in geophysical literature (Canales, 1984; Hornbostel, 1991; Abma and Claerbout, 1995).


Geophysics ◽  
2009 ◽  
Vol 74 (3) ◽  
pp. V43-V48 ◽  
Author(s):  
Guochang Liu ◽  
Sergey Fomel ◽  
Long Jin ◽  
Xiaohong Chen

Stacking plays an important role in improving signal-to-noise ratio and imaging quality of seismic data. However, for low-fold-coverage seismic profiles, the result of conventional stacking is not always satisfactory. To address this problem, we have developed a method of stacking in which we use local correlation as a weight for stacking common-midpoint gathers after NMO processing or common-image-point gathers after prestack migration. Application of the method to synthetic and field data showed that stacking using local correlation can be more effective in suppressing random noise and artifacts than other stacking methods.


Sign in / Sign up

Export Citation Format

Share Document