Intrinsic scaling method for doubly nonlinear parabolic equations and its application

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Masashi Misawa ◽  
Kenta Nakamura

Abstract In this article, we consider a fast diffusive type doubly nonlinear parabolic equation, called 𝑝-Sobolev type flows, and devise a new intrinsic scaling method to transform the prototype doubly nonlinear equation to the 𝑝-Sobolev type flows. As an application, we show the global existence and regularity for the 𝑝-Sobolev type flows with large data.

2012 ◽  
Vol 2012 ◽  
pp. 1-16
Author(s):  
Yongjun Li ◽  
Suyun Wang ◽  
Yanhong Zhang

Our aim in this paper is to study the long-time behavior for a class of doubly nonlinear parabolic equations. First we show that the problem has a unique solution. Then we prove that the semigroup corresponding to the problem is norm-to-weak continuous in Lq and H01. Finally we establish the existence of global attractor of the problem in Lq and H01.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hui Wang ◽  
Caisheng Chen

AbstractIn this paper, we are interested in $L^{\infty }$ L ∞ decay estimates of weak solutions for the doubly nonlinear parabolic equation and the degenerate evolution m-Laplacian equation not in the divergence form. By a modified Moser’s technique we obtain $L^{\infty }$ L ∞ decay estimates of weak solutiona.


Author(s):  
Verena Bögelein ◽  
Andreas Heran ◽  
Leah Schätzler ◽  
Thomas Singer

AbstractIn this article we prove a Harnack inequality for non-negative weak solutions to doubly nonlinear parabolic equations of the form $$\begin{aligned} \partial _t u - {{\,\mathrm{div}\,}}{\mathbf {A}}(x,t,u,Du^m) = {{\,\mathrm{div}\,}}F, \end{aligned}$$ ∂ t u - div A ( x , t , u , D u m ) = div F , where the vector field $${\mathbf {A}}$$ A fulfills p-ellipticity and growth conditions. We treat the slow diffusion case in its full range, i.e. all exponents $$m > 0$$ m > 0 and $$p>1$$ p > 1 with $$m(p-1) > 1$$ m ( p - 1 ) > 1 are included in our considerations.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Hamid El Bahja ◽  
Abderrahmane El Hachimi ◽  
Ali Alami Idrissi

This paper studies a time discretization for a doubly nonlinear parabolic equation related to the p(x)-Laplacian by using Euler-forward scheme. We investigate existence, uniqueness, and stability questions and prove existence of the global compact attractor.


Sign in / Sign up

Export Citation Format

Share Document