scholarly journals Further properties of the Bergman spaces of slice regular functions

2015 ◽  
Vol 15 (4) ◽  
Author(s):  
Fabrizio Colombo ◽  
J. Oscar González-Cervantes ◽  
Irene Sabadini

AbstractWe continue the study of Bergman theory for the class of slice regular functions. In the slice regular setting there are two possibilities to introduce the Bergman spaces, that are called of the first and of the second kind. In this paperwe mainly consider the Bergman theory of the second kind, by providing an explicit description of the Bergman kernel in the case of the unit ball and of the half space. In the case of the unit ball, we study the Bergman-Sce transform. We also show that the two Bergman theories can be compared only if suitableweights are taken into account. Finally,we use the Schwarz reflection principle to relate the Bergman kernel with its values on a complex half plane.

2017 ◽  
Vol 28 (03) ◽  
pp. 1750017 ◽  
Author(s):  
Cinzia Bisi ◽  
Caterina Stoppato

During the development of the theory of slice regular functions over the real algebra of quaternions [Formula: see text] in the last decade, some natural questions arose about slice regular functions on the open unit ball [Formula: see text] in [Formula: see text]. This work establishes several new results in this context. Along with some useful estimates for slice regular self-maps of [Formula: see text] fixing the origin, it establishes two variants of the quaternionic Schwarz–Pick lemma, specialized to maps [Formula: see text] that are not injective. These results allow a full generalization to quaternions of two theorems proven by Landau for holomorphic self-maps [Formula: see text] of the complex unit disk with [Formula: see text]. Landau had computed, in terms of [Formula: see text], a radius [Formula: see text] such that [Formula: see text] is injective at least in the disk [Formula: see text] and such that the inclusion [Formula: see text] holds. The analogous result proven here for slice regular functions [Formula: see text] allows a new approach to the study of Bloch–Landau-type properties of slice regular functions [Formula: see text].


Author(s):  
Zhenghua Xu

In this paper, we mainly investigate two versions of the Bohr theorem for slice regular functions over the largest alternative division algebras of octonions $\mathbb {O}$ . To this end, we establish the coefficient estimates for self-maps of the unit ball of $\mathbb {O}$ and the Carathéodory class in this setting. As a further application of the coefficient estimate, the 1/2-covering theorem is also proven for slice regular functions with convex image.


Filomat ◽  
2020 ◽  
Vol 34 (4) ◽  
pp. 1197-1207
Author(s):  
Sanjay Kumar ◽  
S.D. Sharma ◽  
Khalid Manzoor

In this paper, we define the quaternionic Fock spaces F p? of entire slice hyperholomorphic functions in a quaternionic unit ball B in H: We also study growth estimates and various results of entire slice regular functions in these spaces. The work of this paper is motivated by the recent work of [5] and [26].


2021 ◽  
Vol 76 (4) ◽  
Author(s):  
Amedeo Altavilla

AbstractGiven a quaternionic slice regular function f, we give a direct and effective way to compute the coefficients of its spherical expansion at any point. Such coefficients are obtained in terms of spherical and slice derivatives of the function itself. Afterwards, we compare the coefficients of f with those of its slice derivative $$\partial _{c}f$$ ∂ c f obtaining a countable family of differential equations satisfied by any slice regular function. The results are proved in all details and are accompanied to several examples. For some of the results, we also give alternative proofs.


2017 ◽  
Vol 66 (1) ◽  
pp. 205-235 ◽  
Author(s):  
Jens G Christensen ◽  
Karlheinz Grochenig ◽  
Gestur Olafsson

Sign in / Sign up

Export Citation Format

Share Document