scholarly journals Normalized multi-bump solutions for saturable Schrödinger equations

2019 ◽  
Vol 9 (1) ◽  
pp. 1259-1277
Author(s):  
Xiaoming Wang ◽  
Zhi-Qiang Wang

Abstract In this paper, we are concerned with the existence of multi-bump solutions for a class of semiclassical saturable Schrödinger equations with an density function: $$\begin{array}{} \displaystyle -{\it\Delta} v +{\it\Gamma} \frac{I(\varepsilon x) + v^2}{1+I(\varepsilon x) +v^2} v =\lambda v,\, x\in{{\mathbb{R}}^{2}}. \end{array}$$ We prove that, with the density function being radially symmetric, for given integer k ≥ 2 there exist a family of non-radial, k-bump type normalized solutions (i.e., with the L2 constraint) which concentrate at the global maximum points of density functions when ε → 0+. The proof is based on a variational method in particular on a convexity technique and the concentration-compactness method.

2021 ◽  
Vol 7 (1) ◽  
pp. 1015-1034
Author(s):  
Shulin Zhang ◽  
◽  

<abstract><p>In this paper, we study the existence of a positive ground state solution for a class of generalized quasilinear Schrödinger equations with asymptotically periodic potential. By the variational method, a positive ground state solution is obtained. Compared with the existing results, our results improve and generalize some existing related results.</p></abstract>


Author(s):  
Norman Noguera ◽  
Ademir Pastor

In this work, we study a system of Schrödinger equations involving nonlinearities with quadratic growth. We establish sharp criterion concerned with the dichotomy global existence versus blow-up in finite time. Such a criterion is given in terms of the ground state solutions associated with the corresponding elliptic system, which in turn are obtained by applying variational methods. By using the concentration-compactness method we also investigate the nonlinear stability/instability of the ground states.


Author(s):  
Amin Esfahani

In this paper, we study the dynamical behavior of solutions of nonlinear Schrödinger equations with quadratic interaction and [Formula: see text]-critical growth. We give sharp conditions under which the existence of global and blow-up solutions are deduced. We also show the existence, stability, and blow-up behavior of normalized solutions of this system.


Sign in / Sign up

Export Citation Format

Share Document