Concentration Phenomena in a Biharmonic Equation Involving the Critical Sobolev Exponent

2006 ◽  
Vol 6 (4) ◽  
Author(s):  
Abdelbaki Selmi

AbstractIn this paper, we consider the problemΔin Ω, u = Δu = 0 on ∂Ω, where Ω is a bounded and smooth domain in ℝ

2002 ◽  
Vol 2 (4) ◽  
Author(s):  
Sarni Baraket

AbstractIn this paper, we construct positive weak solutions of a fourth order conformally invariant equation on S


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Yujuan Jiao ◽  
Yanli Wang

We are concerned with the following modified nonlinear Schrödinger system:-Δu+u-(1/2)uΔ(u2)=(2α/(α+β))|u|α-2|v|βu,  x∈Ω,  -Δv+v-(1/2)vΔ(v2)=(2β/(α+β))|u|α|v|β-2v,  x∈Ω,  u=0,  v=0,  x∈∂Ω, whereα>2,  β>2,  α+β<2·2*,  2*=2N/(N-2)is the critical Sobolev exponent, andΩ⊂ℝN  (N≥3)is a bounded smooth domain. By using the perturbation method, we establish the existence of both positive and negative solutions for this system.


2018 ◽  
Vol 2019 (19) ◽  
pp. 5953-5974
Author(s):  
Mónica Clapp ◽  
Jorge Faya ◽  
Filomena Pacella

Abstract Let Ω be a bounded smooth domain in $\mathbb {R}^{N}$ which contains a ball of radius R centered at the origin, N ≥ 3. Under suitable symmetry assumptions, for each δ ∈ (0, R), we establish the existence of a sequence (um, δ) of nodal solutions to the critical problem $$\begin{align*}-\Delta u=|u|^{2^{\ast}-2}u\text{ in }\Omega_{\delta}:=\{x\in\Omega :\left\vert x\right\vert>\delta\},\quad u=0\text{ on }\partial \Omega_{\delta},\nonumber\end{align*}$$ where $2^{\ast }:=\frac {2N}{N-2}$ is the critical Sobolev exponent. We show that, if Ω is strictly star-shaped then, for each $m\in \mathbb {N},$ the solutions um, δ concentrate and blow up at 0, as $\delta \rightarrow 0,$ and their limit profile is a tower of nodal bubbles, that is, it is a sum of rescaled nonradial sign-changing solutions to the limit problem $$\begin{align*}-\Delta u=|u|^{2^{\ast}-2}u, \quad u\in D^{1,2}(\mathbb{R}^{N}),\nonumber\end{align*}$$ centered at the origin.


2017 ◽  
Vol 17 (4) ◽  
pp. 641-659
Author(s):  
Zhenyu Guo ◽  
Kanishka Perera ◽  
Wenming Zou

AbstractWe consider the critical p-Laplacian system\left\{\begin{aligned} &\displaystyle{-}\Delta_{p}u-\frac{\lambda a}{p}\lvert u% \rvert^{a-2}u\lvert v\rvert^{b}=\mu_{1}\lvert u\rvert^{p^{\ast}-2}u+\frac{% \alpha\gamma}{p^{\ast}}\lvert u\rvert^{\alpha-2}u\lvert v\rvert^{\beta},&&% \displaystyle x\in\Omega,\\ &\displaystyle{-}\Delta_{p}v-\frac{\lambda b}{p}\lvert u\rvert^{a}\lvert v% \rvert^{b-2}v=\mu_{2}\lvert v\rvert^{p^{\ast}-2}v+\frac{\beta\gamma}{p^{\ast}}% \lvert u\rvert^{\alpha}\lvert v\rvert^{\beta-2}v,&&\displaystyle x\in\Omega,\\ &\displaystyle u,v\text{ in }D_{0}^{1,p}(\Omega),\end{aligned}\right.where {\Delta_{p}u:=\operatorname{div}(\lvert\nabla u\rvert^{p-2}\nabla u)} is the p-Laplacian operator defined onD^{1,p}(\mathbb{R}^{N}):=\bigl{\{}u\in L^{p^{\ast}}(\mathbb{R}^{N}):\lvert% \nabla u\rvert\in L^{p}(\mathbb{R}^{N})\bigr{\}},endowed with the norm {{\lVert u\rVert_{D^{1,p}}:=(\int_{\mathbb{R}^{N}}\lvert\nabla u\rvert^{p}\,dx% )^{\frac{1}{p}}}}, {N\geq 3}, {1<p<N}, {\lambda,\mu_{1},\mu_{2}\geq 0}, {\gamma\neq 0}, {a,b,\alpha,\beta>1} satisfy {a+b=p}, {\alpha+\beta=p^{\ast}:=\frac{Np}{N-p}}, the critical Sobolev exponent, Ω is {\mathbb{R}^{N}} or a bounded domain in {\mathbb{R}^{N}} and {D_{0}^{1,p}(\Omega)} is the closure of {C_{0}^{\infty}(\Omega)} in {D^{1,p}(\mathbb{R}^{N})}. Under suitable assumptions, we establish the existence and nonexistence of a positive least energy solution of this system. We also consider the existence and multiplicity of the nontrivial nonnegative solutions.


Sign in / Sign up

Export Citation Format

Share Document