scholarly journals Towers of Nodal Bubbles for the Bahri–Coron Problem in Punctured Domains

2018 ◽  
Vol 2019 (19) ◽  
pp. 5953-5974
Author(s):  
Mónica Clapp ◽  
Jorge Faya ◽  
Filomena Pacella

Abstract Let Ω be a bounded smooth domain in $\mathbb {R}^{N}$ which contains a ball of radius R centered at the origin, N ≥ 3. Under suitable symmetry assumptions, for each δ ∈ (0, R), we establish the existence of a sequence (um, δ) of nodal solutions to the critical problem $$\begin{align*}-\Delta u=|u|^{2^{\ast}-2}u\text{ in }\Omega_{\delta}:=\{x\in\Omega :\left\vert x\right\vert>\delta\},\quad u=0\text{ on }\partial \Omega_{\delta},\nonumber\end{align*}$$ where $2^{\ast }:=\frac {2N}{N-2}$ is the critical Sobolev exponent. We show that, if Ω is strictly star-shaped then, for each $m\in \mathbb {N},$ the solutions um, δ concentrate and blow up at 0, as $\delta \rightarrow 0,$ and their limit profile is a tower of nodal bubbles, that is, it is a sum of rescaled nonradial sign-changing solutions to the limit problem $$\begin{align*}-\Delta u=|u|^{2^{\ast}-2}u, \quad u\in D^{1,2}(\mathbb{R}^{N}),\nonumber\end{align*}$$ centered at the origin.

2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Yujuan Jiao ◽  
Yanli Wang

We are concerned with the following modified nonlinear Schrödinger system:-Δu+u-(1/2)uΔ(u2)=(2α/(α+β))|u|α-2|v|βu,  x∈Ω,  -Δv+v-(1/2)vΔ(v2)=(2β/(α+β))|u|α|v|β-2v,  x∈Ω,  u=0,  v=0,  x∈∂Ω, whereα>2,  β>2,  α+β<2·2*,  2*=2N/(N-2)is the critical Sobolev exponent, andΩ⊂ℝN  (N≥3)is a bounded smooth domain. By using the perturbation method, we establish the existence of both positive and negative solutions for this system.


Author(s):  
Zongming Guo ◽  
Zhongyuan Liu

We continue to study the nonlinear fourth-order problem TΔu – DΔ2u = λ/(L + u)2, –L < u < 0 in Ω, u = 0, Δu = 0 on ∂Ω, where Ω ⊂ ℝN is a bounded smooth domain and λ > 0 is a parameter. When N = 2 and Ω is a convex domain, we know that there is λc > 0 such that for λ ∊ (0, λc) the problem possesses at least two regular solutions. We will see that the convexity assumption on Ω can be removed, i.e. the main results are still true for a general bounded smooth domain Ω. The main technique in the proofs of this paper is the blow-up argument, and the main difficulty is the analysis of touch-down behaviour.


Author(s):  
Zhijun Zhang

This paper is mainly concerned with the global asymptotic behaviour of the unique solution to a class of singular Dirichlet problems − Δu = b(x)g(u), u > 0, x ∈ Ω, u|∂Ω = 0, where Ω is a bounded smooth domain in ℝ n , g ∈ C1(0, ∞) is positive and decreasing in (0, ∞) with $\lim _{s\rightarrow 0^+}g(s)=\infty$ , b ∈ Cα(Ω) for some α ∈ (0, 1), which is positive in Ω, but may vanish or blow up on the boundary properly. Moreover, we reveal the asymptotic behaviour of such a solution when the parameters on b tend to the corresponding critical values.


2002 ◽  
Vol 04 (03) ◽  
pp. 409-434 ◽  
Author(s):  
ADIMURTHI

In this article, we have determined the remainder term for Hardy–Sobolev inequality in H1(Ω) for Ω a bounded smooth domain and studied the existence, non existence and blow up of first eigen value and eigen function for the corresponding Hardy–Sobolev operator with Neumann boundary condition.


2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Mónica Clapp ◽  
Filomena Pacella

AbstractWe establish the existence of nodal solutions to the supercritical problemin a symmetric bounded smooth domain Ω of


Author(s):  
Zongming Guo

The structure of positive boundary blow-up solutions to semilinear problems of the form −Δu = λf(u) in Ω, u = ∞ on ∂Ω, Ω ⊂ RN a bounded smooth domain, is studied for a class of nonlinearities f ∈ C1 ([0, ∞)\{z2}) satisfying f (0) = f(z1) = f (z2) = 0 with 0 < z1 < z2, f < 0 in (0, z1)∪(z2, ∞), f > 0 in (z1, z2). Two positive boundary-layer solutions and infinitely many positive spike-layer solutions are obtained for λ sufficiently large.


2016 ◽  
Vol 18 (02) ◽  
pp. 1550021 ◽  
Author(s):  
Marcelo F. Furtado ◽  
Bruno N. Souza

We consider the problem [Formula: see text] where [Formula: see text] is a bounded smooth domain, [Formula: see text], [Formula: see text], [Formula: see text]. Under some suitable conditions on the continuous potential [Formula: see text] and on the parameter [Formula: see text], we obtain one nodal solution for [Formula: see text] and one positive solution for [Formula: see text].


Author(s):  
Shubin Yu ◽  
Ziheng Zhang ◽  
Rong Yuan

In this paper we consider the following Schrödinger–Kirchhoff–Poisson-type system { − ( a + b ∫ Ω | ∇ u | 2 d x ) Δ u + λ ϕ u = Q ( x ) | u | p − 2 u in   Ω , − Δ ϕ = u 2 in   Ω , u = ϕ = 0 on   ∂ Ω , where Ω is a bounded smooth domain of R 3 , a > 0 , b ≥ 0 are constants and λ is a positive parameter. Under suitable conditions on Q ( x ) and combining the method of invariant sets of descending flow, we establish the existence and multiplicity of sign-changing solutions to this problem for the case that 2 < p < 4 as λ sufficient small. Furthermore, for λ = 1 and the above assumptions on Q ( x ) , we obtain the same conclusions with 2 < p < 12 5 .


2020 ◽  
Vol 10 (4) ◽  
Author(s):  
Sihua Liang ◽  
Vicenţiu D. Rădulescu

AbstractIn this paper, we are concerned with the existence of least energy sign-changing solutions for the following fractional Kirchhoff problem with logarithmic and critical nonlinearity: $$\begin{aligned} \left\{ \begin{array}{ll} \left( a+b[u]_{s,p}^p\right) (-\Delta )^s_pu = \lambda |u|^{q-2}u\ln |u|^2 + |u|^{ p_s^{*}-2 }u &{}\quad \text {in } \Omega , \\ u=0 &{}\quad \text {in } {\mathbb {R}}^N{\setminus } \Omega , \end{array}\right. \end{aligned}$$ a + b [ u ] s , p p ( - Δ ) p s u = λ | u | q - 2 u ln | u | 2 + | u | p s ∗ - 2 u in Ω , u = 0 in R N \ Ω , where $$N >sp$$ N > s p with $$s \in (0, 1)$$ s ∈ ( 0 , 1 ) , $$p>1$$ p > 1 , and $$\begin{aligned}{}[u]_{s,p}^p =\iint _{{\mathbb {R}}^{2N}}\frac{|u(x)-u(y)|^p}{|x-y|^{N+ps}}dxdy, \end{aligned}$$ [ u ] s , p p = ∬ R 2 N | u ( x ) - u ( y ) | p | x - y | N + p s d x d y , $$p_s^*=Np/(N-ps)$$ p s ∗ = N p / ( N - p s ) is the fractional critical Sobolev exponent, $$\Omega \subset {\mathbb {R}}^N$$ Ω ⊂ R N $$(N\ge 3)$$ ( N ≥ 3 ) is a bounded domain with Lipschitz boundary and $$\lambda $$ λ is a positive parameter. By using constraint variational methods, topological degree theory and quantitative deformation arguments, we prove that the above problem has one least energy sign-changing solution $$u_b$$ u b . Moreover, for any $$\lambda > 0$$ λ > 0 , we show that the energy of $$u_b$$ u b is strictly larger than two times the ground state energy. Finally, we consider b as a parameter and study the convergence property of the least energy sign-changing solution as $$b \rightarrow 0$$ b → 0 .


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Xingping Li ◽  
Xiumei He

We study the following Kirchhoff-type equations-a+b∫Ω∇u2dxΔu+Vxu=fx,u, inΩ,u=0, in∂Ω, whereΩis a bounded smooth domain ofRN  (N=1,2,3),a>0,b≥0,f∈C(Ω¯×R,R), andV∈C(Ω¯,R). Under some suitable conditions, we prove that the equation has three solutions of mountain pass type: one positive, one negative, and sign-changing. Furthermore, iffis odd with respect to its second variable, this problem has infinitely many sign-changing solutions.


Sign in / Sign up

Export Citation Format

Share Document