scholarly journals Laboratory Management, Accreditation, Quality Assurance, performance specification

2021 ◽  
Vol 59 (s1) ◽  
pp. s528-s563
Author(s):  
Brian Swanson

U.S. Federal regulations under Title IV of the Clean Air Act Amendments promulgated in 1990 require continuous monitoring of nitrogen oxides (NOx) and carbon dioxide emissions from large gas turbines. Local, regional, or State authorities may mandate continuous monitoring for carbon monoxide, sulfur dioxide, volatile organic compounds, and other specific pollutant parameters. U.S. regulations that require continuous emissions monitoring systems (CEMS) also allow for the use of predictive approaches as an alternative providing the installed predictive emissions monitoring system (PEMS) meets rigorous performance specification criteria and the site performs ongoing quality assurance tasks such as periodic audits with portable analyzers and annual accuracy testing. A statistical hybrid predictive emission monitoring system (PEMS) has been deployed at numerous sites in the United States to meet EPA requirements for continuous monitoring of gas turbine pollutant emissions. This paper discusses specific implementations of a unique cost-effective statistical hybrid PEMS on various classes of gas turbines ranging in size from 60kW to 180 MW, both gas-fired and liquid-fired units, in simple cycle and combined cycle mode of operation. The turbines were equipped with a variety of NOx control strategies including dry low NOx, steam and water injection, solid post-combustion catalyst, SoLoNOx™, and selective catalytic reduction. In each instance the predictive engine operated on training data of at least three days and up to ninety days as required to develop a robust empirical model of the emissions. Each model was subsequently evaluated using standard U.S. EPA performance specification test methods. The results of PEMS performance testing on these gas turbines are presented along with additional information regarding the quality assurance and quality control procedures put in place and the costs to support the ongoing operation of the deployed compliance statistical hybrid PEMS.


2020 ◽  
Vol 58 (4) ◽  
pp. 588-596
Author(s):  
Anne Stavelin ◽  
Kristine Flesche ◽  
Mette Tollaanes ◽  
Nina Gade Christensen ◽  
Sverre Sandberg

AbstractBackgroundIt has been debated whether point-of care (POC) glycated hemoglobin (HbA1c) measurements methods can be used for diagnosing persons with diabetes mellitus. The aim of this study was to evaluate the analytical performance of the POC Afinion HbA1c system in the hands of the users, and to investigate which predictors that were associated with good participant performance.MethodsExternal quality assurance (EQA) data from seven surveys in 2017–2018 with a total of 5809 Afinion participants from a POC total quality system in Norway were included in this study (response rate 90%). The control materials were freshly drawn pooled EDTA whole blood. Each participant was evaluated against the analytical performance specification of ±6% from the target value, while the Afinion system was evaluated against the pooled within-laboratory CV <2%, the between-laboratory CV <3.5%, and bias <0.3%HbA1c. Logistic regression analyses were used to investigate which factors were associated with good participant performance.ResultsThe participant pass rates for each survey varied from 98.2% to 99.7%. The pooled within-laboratory CV varied from 1.3% to 1.5%, the between-laboratory CV varied from 1.5% to 2.1%, and bias varied between −0.17 and −0.01 %HbA1c in all surveys. Reagent lot was the only independent factor to predict good participant performance.ConclusionsAfinion HbA1c fulfilled the analytical performance specifications and is robust in the hands of the users. It can therefore be used both in diagnosing and monitoring persons with diabetes mellitus, given that the instrument is monitored by an EQA system.


Sign in / Sign up

Export Citation Format

Share Document