scholarly journals Collaborative robot assisted smart needle placement

2021 ◽  
Vol 7 (2) ◽  
pp. 472-475
Author(s):  
Maximilian Neidhardt ◽  
Stefan Gerlach ◽  
Max-Heinrich Laves ◽  
Sarah Latus ◽  
Carolin Stapper ◽  
...  

Abstract Needles are key tools to realize minimally invasive interventions. Physicians commonly rely on subjectively perceived insertion forces at the distal end of the needle when advancing the needle tip to the desired target. However, detecting tissue transitions at the distal end of the needle is difficult since the sensed forces are dominated by shaft forces. Disentangling insertion forces has the potential to substantially improve needle placement accuracy.We propose a collaborative system for robotic needle insertion, relaying haptic information sensed directly at the needle tip to the physician by haptic feedback through a light weight robot. We integrate optical fibers into medical needles and use optical coherence tomography to image a moving surface at the tip of the needle. Using a convolutional neural network, we estimate forces acting on the needle tip from the optical coherence tomography data. We feed back forces estimated at the needle tip for real time haptic feedback and robot control. When inserting the needle at constant velocity, the force change estimated at the tip when penetrating tissue layers is up to 94% between deep tissue layers compared to the force change at the needle handle of 2.36 %. Collaborative needle insertion results in more sensible force change at tissue transitions with haptic feedback from the tip (49.79 ± 25.51)% compared to the conventional shaft feedback (15.17 ± 15.92) %. Tissue transitions are more prominent when utilizing forces estimated at the needle tip compared to the forces at the needle shaft, indicating that a more informed advancement of the needle is possible with our system.

Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 428
Author(s):  
Shoujing Guo ◽  
Nicolas R. Sarfaraz ◽  
William G. Gensheimer ◽  
Axel Krieger ◽  
Jin U. Kang

Deep anterior lamellar keratoplasty (DALK) is a highly challenging procedure for cornea transplant that involves removing the corneal layers above Descemet’s membrane (DM). This is achieved by a “big bubble” technique where a needle is inserted into the stroma of the cornea down to DM and the injection of either air or liquid. DALK has important advantages over penetrating keratoplasty (PK) including lower rejection rate, less endothelial cell loss, and increased graft survival. In this paper, we successfully designed and evaluated the optical coherence tomography (OCT) distal sensor integrated needle for a precise big bubble technique. We successfully used this sensor for micro-control of a robotic DALK device termed AUTO-DALK for autonomous big bubble needle insertion. The OCT distal sensor was integrated inside a 25-gauge needle, which was used for pneumo-dissection. The AUTO-DALK device is built on a manual trephine platform which includes a vacuum ring to fix the device on the eye and add a needle driver at an angle of 60 degrees from vertical. During the test on five porcine eyes with a target depth of 90%, the measured insertion depth as a percentage of cornea thickness for the AUTO-DALK device was 90.05 % ± 2.33 % without any perforation compared to 79.16 % ± 5.68 % for unassisted free-hand insertion and 86.20 % ± 5.31 % for assisted free-hand insertion. The result showed a higher precision and consistency of the needle placement with AUTO-DALK, which could lead to better visual outcomes and fewer complications.


2005 ◽  
Vol 22 (8) ◽  
pp. 1492 ◽  
Author(s):  
Yimin Wang ◽  
Hyungsik Lim ◽  
Frank Wise ◽  
Ivan Tomov ◽  
J. Stuart Nelson ◽  
...  

2017 ◽  
Vol 42 (12) ◽  
pp. 2302 ◽  
Author(s):  
Yang Zhao ◽  
Will J. Eldridge ◽  
Jason R. Maher ◽  
Sanghoon Kim ◽  
Michael Crose ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document