Discovery of the element with atomic number Z = 118 completing the 7th row of the periodic table (IUPAC Technical Report)

2016 ◽  
Vol 38 (2) ◽  
2016 ◽  
Vol 88 (1-2) ◽  
pp. 155-160 ◽  
Author(s):  
Paul J. Karol ◽  
Robert C. Barber ◽  
Bradley M. Sherrill ◽  
Emanuele Vardaci ◽  
Toshimitsu Yamazaki

AbstractThe fourth IUPAC/IUPAP Joint Working Party (JWP) on the priority of claims to the discovery of new elements 113, 115, 117 and 118 has reviewed the relevant literature pertaining to several claims. In accordance with the criteria for the discovery of elements previously established by the 1991 IUPAC/IUPAP Transfermium Working Group (TWG), and reinforced in subsequent IUPAC/IUPAP JWP discussions, it was determined that the Dubna-Livermore collaboration has fulfilled those criteria for element Z=118. A synopsis of experiments and related efforts is presented.


1920 ◽  
Vol 3 (2) ◽  
pp. 237-245 ◽  
Author(s):  
Jacques Loeb

1. It is shown that the NH4 ion acts in cases of antagonism on the egg of Fundulus more like the K ion than the Na ion; this corresponds to the fact that in its general chemical behavior the NH4 ion resembles the K ion more closely than the Na ion. 2. It is shown that the tolerance of sea urchin eggs towards the Li ion can be increased 500 per cent or more if at the same time a certain amount of Na ion is replaced by K, Rb, or Cs ions. Since in the periodic table Na occupies a position between K and Li it is inferred that the Li and K ions deviate in their physiological action in the opposite direction from the Na ion. 3. These data indicate that the behavior of the K ion in antagonistic salt action (which forms the basis of the physiologically balanced action of ions) is due to its purely chemical character, i.e. its position in the periodic table or rather to its atomic number, and not to those explosions in its nucleus which give rise to a trace of radioactivity.


2017 ◽  
Author(s):  
Paul J. Karol ◽  
Robert C. Barber ◽  
Bradley M. Sherrill ◽  
Emanuele Vardaci ◽  
Toshimitsu Yamazaki
Keyword(s):  

2009 ◽  
Vol 81 (7) ◽  
pp. 1331-1343 ◽  
Author(s):  
Robert C. Barber ◽  
Heinz W. Gäggeler ◽  
Paul J. Karol ◽  
Hiromichi Nakahara ◽  
Emanuele Vardaci ◽  
...  

The IUPAC/IUPAP Joint Working Party (JWP) on the priority of claims to the discovery of new elements has reviewed the relevant literature pertaining to several claims. In accordance with the criteria for the discovery of elements previously established by the 1992 IUPAC/IUPAP Transfermium Working Group (TWG), and reiterated by the 1999 and 2003 IUPAC/IUPAP JWPs, it was determined that the 1996 and 2002 claims by the Hofmann et al. research collaborations for the discovery of the element with atomic number 112 at Gesellschaft für Schwerionenforschung (GSI) share in the fulfillment of those criteria. A synopsis of Z = 112 experiments and related efforts is presented. A subsequent report will address identification of higher-Z elements including those of odd atomic number.


Author(s):  
Paul J. Karol

Uranium was Discovered in 1789 by the German chemist Martin Heinrich Klaproth in pitchblende ore from Joachimsthal, a town now in the Czech Republic. Nearly a century later, the Russian chemist Dmitri Mendeleev placed uranium at the end of his periodic table of the chemical elements. A century ago, Moseley used x-ray spectroscopy to set the atomic number of uranium at 92, making it the heaviest element known at the time. This chapter will deal with the quest to explore that limit and heavy and superheavy elements, and provide an update on where continuation of the periodic table is headed and some of the significant changes in its appearance and interpretation that may be necessary. Our use of the term “heavy elements” differs from that of astrophysicists who refer to elements above helium as heavy elements. The meaning of the term “superheavy” element is still not exactly agreed upon and has changed over the past several decades. “Ultraheavy” is occasionally used. Interestingly, there is no formal definition of “periodic table” by the International Union of Pure and Applied Chemistry (IUPAC) in their glossary of definitions: the “Gold Book.” But there are plenty of definitions in the general literature—including Wikipedia, the collaborative, free, internet encyclopedia which calls the “periodic table” a “tabular arrangement of the chemical elements, organized on the basis of their atomic numbers, electron configurations (electron shell model), and recurring chemical properties. Elements are presented in order of increasing atomic number (the number of protons in the nucleus).” IUPAC’s first definition of a “chemical element” is: “A species of atoms; all atoms with the same number of protons in the atomic nucleus.” Their definition of atom: “the smallest particle still characterizing a chemical element. It consists of a nucleus of positive charge (Z is the proton number and e the elementary charge) carrying almost all its mass (more than 99.9%) and Z electrons determining its size.”


2016 ◽  
Vol 38 (2) ◽  
Author(s):  
Lars Öhrström ◽  
Norman E. Holden

AbstractWhen Lars Öhrström started paying real attention to chemistry, during his high school years in the early 1980s, the three-letter symbols then designating any element with atomic number higher than 103 seemed like a permanent fixture to the periodic table in the chemistry classroom. In the following years, he learned that they were only temporary placeholders for elements that fulfilled the criteria of “being discovered” but where, for unclear reasons, a name had not yet been agreed.


Author(s):  
E. Cicely Ridley

ABSTRACTZ(nl; r) is the contribution to Z(r) from an electron in the (nl) wave function. The Z(nl; r) vary systematically with atomic number and, as N becomes large, tend to the corresponding hydrogen-like functions, ZH(nl; r). A two-parameter method of fitting the Z(nl; r) to the ZH(nl; r) is described. This involves a ‘screening constant’ and a ‘slope constant’, both of which are defined. From published data, the two parameters have been obtained as functions of atomic number. The parameters for an unsolved atom can then be found by interpolation and approximate Z(nl; r) derived by appropriate adjustment of the functions for the nearest atom in the periodic table for which they are known. The method has been tested by interpolating for the (3d) function between Cu+ and Rb+ and by preparing estimates of the Z(nl; r) for the unknown structure Mo+. The results were good for all but Z(4d; r) for Mo+, where the number of values of the screening and slope constants already known was insufficient for reliable interpolation.


Sign in / Sign up

Export Citation Format

Share Document