scholarly journals On Two Optimal Control Problems for Magnetic Fields

2014 ◽  
Vol 14 (4) ◽  
pp. 555-573 ◽  
Author(s):  
Serge Nicaise ◽  
Simon Stingelin ◽  
Fredi Tröltzsch

AbstractTwo optimal control problems for instationary magnetization processes are considered in 3D spatial domains that include electrically conducting and nonconducting regions. The magnetic fields are generated by induction coils. In the first model, the induction coil is considered as part of the conducting region and the electrical current is taken as control. In the second, the coil is viewed as part of the nonconducting region and the electrical voltage is the control. Here, an integro-differential equation accounts for the magnetic induction law that couples the given electrical voltage with the induced electrical current in the induction coil. We derive first-order necessary optimality conditions for the optimal controls of both problems. Based on them, numerical methods of gradient type are applied. Moreover, we report on the application of model reduction by POD that lead to tremendous savings. Numerical tests are presented for academic 3D geometries but also for a real-world application.

2020 ◽  
Vol 37 (3) ◽  
pp. 1021-1047
Author(s):  
Roberto Andreani ◽  
Valeriano Antunes de Oliveira ◽  
Jamielli Tomaz Pereira ◽  
Geraldo Nunes Silva

Abstract Necessary optimality conditions for optimal control problems with mixed state-control equality constraints are obtained. The necessary conditions are given in the form of a weak maximum principle and are obtained under (i) a new regularity condition for problems with mixed linear equality constraints and (ii) a constant rank type condition for the general non-linear case. Some instances of problems with equality and inequality constraints are also covered. Illustrative examples are presented.


A class of optimal control problems in viscous flow is studied. Main result is the existence theorem for optimal control. Three typical flow control problems are formulated within this general class.


2016 ◽  
Vol 24 (1) ◽  
pp. 18-36 ◽  
Author(s):  
Ali Alizadeh ◽  
Sohrab Effati

In this work, the variational iteration method (VIM) is used to solve a class of fractional optimal control problems (FOCPs). New Lagrange multipliers are determined and some new iterative formulas are presented. The fractional derivative (FD) in these problems is in the Caputo sense. The necessary optimality conditions are achieved for FOCPs in terms of associated Euler–Lagrange equations and then the VIM is used to solve the resulting fractional differential equations. This technique rapidly provides the convergent successive approximations of the exact solution and the solutions approach the classical solutions of the problem as the order of the FDs approaches 1. To achieve the solution of the FOCPs using VIM, four illustrative examples are included to demonstrate the validity and applicability of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document