A Reliable Residual Based A Posteriori Error Estimator for a Quadratic Finite Element Method for the Elliptic Obstacle Problem

2015 ◽  
Vol 15 (2) ◽  
pp. 145-160 ◽  
Author(s):  
Thirupathi Gudi ◽  
Kamana Porwal

AbstractA residual based a posteriori error estimator is derived for a quadratic finite element method (FEM) for the elliptic obstacle problem. The error estimator involves various residuals consisting of the data of the problem, discrete solution and a Lagrange multiplier related to the obstacle constraint. The choice of the discrete Lagrange multiplier yields an error estimator that is comparable with the error estimator in the case of linear FEM. Further, an a priori error estimate is derived to show that the discrete Lagrange multiplier converges at the same rate as that of the discrete solution of the obstacle problem. The numerical experiments of adaptive FEM show optimal order convergence. This demonstrates that the quadratic FEM for obstacle problem exhibits optimal performance.

2015 ◽  
Vol 15 (3) ◽  
pp. 259-277 ◽  
Author(s):  
Carsten Carstensen ◽  
Jun Hu

AbstractThis paper provides a refined a posteriori error control for the obstacle problem with an affine obstacle which allows for a proof of optimal complexity of an adaptive algorithm. This is the first adaptive mesh-refining finite element method known to be of optimal complexity for some variational inequality. The result holds for first-order conforming finite element methods in any spacial dimension based on shape-regular triangulation into simplices for an affine obstacle. The key contribution is the discrete reliability of the a posteriori error estimator from [Numer. Math. 107 (2007), 455–471] in an edge-oriented modification which circumvents the difficulties caused by the non-existence of a positive second-order approximation [Math. Comp. 71 (2002), 1405–1419].


2021 ◽  
Vol 40 (4) ◽  
Author(s):  
Khallih Ahmed Blal ◽  
Brahim Allam ◽  
Zoubida Mghazli

AbstractWe are interested in the discretization of a diffusion problem with highly oscillating coefficient, by a multi-scale finite-element method (MsFEM). The objective of this method is to capture the multi-scale structure of the solution via local basis functions which contain the essential information on small scales. In this paper, we perform an a posteriori analysis of this discretization. The main result consists of building error indicators with respect to both small and large meshes used in this method. We present a numerical test in which the experiments are in good coherency with the results of analysis.


1999 ◽  
Vol 09 (02) ◽  
pp. 261-286 ◽  
Author(s):  
SLIMANE ADJERID ◽  
JOSEPH E. FLAHERTY ◽  
IVO BABUŠKA

Babuška and Yu constructed a posteriori estimates for finite element discretization errors of linear elliptic problems utilizing a dichotomy principal stating that the errors of odd-order approximations arise near element edges as mesh spacing decreases while those of even-order approximations arise in element interiors. We construct similar a posteriori estimates for the spatial errors of finite element method-of-lines solutions of linear parabolic partial differential equations on square-element meshes. Error estimates computed in this manner are proven to be asymptotically correct; thus, they converge in strain energy under mesh refinement at the same rate as the actual errors.


Sign in / Sign up

Export Citation Format

Share Document