Modified Minimal Error Method for Nonlinear Ill-Posed Problems

2018 ◽  
Vol 18 (2) ◽  
pp. 313-321
Author(s):  
M. Sabari ◽  
Santhosh George

AbstractAn error estimate for the minimal error method for nonlinear ill-posed problems under general a Hölder-type source condition is not known. We consider a modified minimal error method for nonlinear ill-posed problems. Using a Hölder-type source condition, we obtain an optimal order error estimate. We also consider the modified minimal error method with noisy data and provide an error estimate.

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Monnanda Erappa Shobha ◽  
Santhosh George

Recently, Vasin and George (2013) considered an iterative scheme for approximately solving an ill-posed operator equationF(x)=y. In order to improve the error estimate available by Vasin and George (2013), in the present paper we extend the iterative method considered by Vasin and George (2013), in the setting of Hilbert scales. The error estimates obtained under a general source condition onx0-x^(x0is the initial guess andx^is the actual solution), using the adaptive scheme proposed by Pereverzev and Schock (2005), are of optimal order. The algorithm is applied to numerical solution of an integral equation in Numerical Example section.


2012 ◽  
Vol 12 (1) ◽  
pp. 32-45 ◽  
Author(s):  
Santhosh George ◽  
Atef Ibrahim Elmahdy

AbstractIn this paper, we consider an iterative method for the approximate solution of the nonlinear ill-posed operator equation Tx = y. The iteration procedure converges quadratically to the unique solution of the equation for the regularized approximation. It is known that (Tautanhahn (2002)) this solution converges to the solution of the given ill-posed operator equation. The convergence analysis and the stopping rule are based on a suitably constructed majorizing sequence. We show that the adaptive scheme considered by Perverzev and Schock (2005) for choosing the regularization parameter can be effectively used here for obtaining an optimal order error estimate.


2011 ◽  
Vol 15 (2) ◽  
pp. 325-341 ◽  
Author(s):  
Huan-Zhen Chen ◽  
◽  
Zhao-Jie Zhou ◽  
Hong Wang ◽  
Hong-Ying Man ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Ailing Zhu

The semidiscrete and fully discrete discontinuous mixed covolume schemes for the linear parabolic integrodifferential problems on triangular meshes are proposed. The error analysis of the semidiscrete and fully discrete discontinuous mixed covolume scheme is presented and the optimal order error estimate in discontinuousH(div)and first-order error estimate inL2are obtained with the lowest order Raviart-Thomas mixed element space.


Sign in / Sign up

Export Citation Format

Share Document