triangular meshes
Recently Published Documents


TOTAL DOCUMENTS

478
(FIVE YEARS 75)

H-INDEX

43
(FIVE YEARS 3)

2022 ◽  
Vol 41 (2) ◽  
pp. 1-16
Author(s):  
Yuichi Nagata ◽  
Shinji Imahori

Escher tiling is well known as a tiling that consists of one or a few recognizable figures, such as animals. The Escherization problem involves finding the most similar shape to a given goal figure that can tile the plane. However, it is easy to imagine that there is no similar tile shape for complex goal shapes. This article devises a method for finding a satisfactory tile shape in such a situation. To obtain a satisfactory tile shape, the tile shape is generated by deforming the goal shape to a considerable extent while retaining the characteristics of the original shape. To achieve this, both goal and tile shapes are represented as triangular meshes to consider not only the contours but also the internal similarity of the shapes. To measure the naturalness of the deformation, energy functions based on traditional as-rigid-as-possible shape modeling are incorporated into a recently developed framework of the exhaustive search of the templates for the Escherization problem. The developed algorithms find satisfactory tile shapes with natural deformations for fairly complex goal shapes.


2021 ◽  
Vol 27 (5) ◽  
pp. 1-11
Author(s):  
Hyunah Park ◽  
Daeun Kang ◽  
Taesoo Kwon
Keyword(s):  

2021 ◽  
Author(s):  
Shang-Yuan Chen ◽  
Shu-Fen Chang ◽  
Chih-Wei Yang

Algorithms ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 304
Author(s):  
Cristian Rendon-Cardona ◽  
Jorge Correa ◽  
Diego A. Acosta ◽  
Oscar Ruiz-Salguero

Fitting of analytic forms to point or triangle sets is central to computer-aided design, manufacturing, reverse engineering, dimensional control, etc. The existing approaches for this fitting assume an input of statistically strong point or triangle sets. In contrast, this manuscript reports the design (and industrial application) of fitting algorithms whose inputs are specifically poor triangular meshes. The analytic forms currently addressed are planes, cones, cylinders and spheres. Our algorithm also extracts the support submesh responsible for the analytic primitive. We implement spatial hashing and boundary representation for a preprocessing sequence. When the submesh supporting the analytic form holds strict C0-continuity at its border, submesh extraction is independent of fitting, and our algorithm is a real-time one. Otherwise, segmentation and fitting are codependent and our algorithm, albeit correct in the analytic form identification, cannot perform in real-time.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1936
Author(s):  
Yujin Ha ◽  
Jung-Ho Park ◽  
Seung-Hyun Yoon

Curves on a polygonal mesh are quite useful for geometric modeling and processing such as mesh-cutting and segmentation. In this paper, an effective method for constructing C1 piecewise cubic curves on a triangular mesh M while interpolating the given mesh points is presented. The conventional Hermite interpolation method is extended such that the generated curve lies on M. For this, a geodesic vector is defined as a straightest geodesic with symmetric property on edge intersections and mesh vertices, and the related geodesic operations between points and vectors on M are defined. By combining cubic Hermite interpolation and newly devised geodesic operations, a geodesic Hermite spline curve is constructed on a triangular mesh. The method follows the basic steps of the conventional Hermite interpolation process, except that the operations between the points and vectors are replaced with the geodesic. The effectiveness of the method is demonstrated by designing several sophisticated curves on triangular meshes and applying them to various applications, such as mesh-cutting, segmentation, and simulation.


Sign in / Sign up

Export Citation Format

Share Document