scholarly journals Energy Contraction and Optimal Convergence of Adaptive Iterative Linearized Finite Element Methods

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Pascal Heid ◽  
Dirk Praetorius ◽  
Thomas P. Wihler

Abstract We revisit a unified methodology for the iterative solution of nonlinear equations in Hilbert spaces. Our key observation is that the general approach from [P. Heid and T. P. Wihler, Adaptive iterative linearization Galerkin methods for nonlinear problems, Math. Comp. 89 2020, 326, 2707–2734; P. Heid and T. P. Wihler, On the convergence of adaptive iterative linearized Galerkin methods, Calcolo 57 2020, Paper No. 24] satisfies an energy contraction property in the context of (abstract) strongly monotone problems. This property, in turn, is the crucial ingredient in the recent convergence analysis in [G. Gantner, A. Haberl, D. Praetorius and S. Schimanko, Rate optimality of adaptive finite element methods with respect to the overall computational costs, preprint 2020]. In particular, we deduce that adaptive iterative linearized finite element methods (AILFEMs) lead to full linear convergence with optimal algebraic rates with respect to the degrees of freedom as well as the total computational time.

2008 ◽  
Vol 18 (7/8) ◽  
pp. 1015-1035 ◽  
Author(s):  
D.R. Davies ◽  
J.H. Davies ◽  
O. Hassan ◽  
K. Morgan ◽  
P. Nithiarasu

Author(s):  
L-Y Li ◽  
P Bettess ◽  
J W Bull ◽  
T Bond

This paper presents some new ideas for developing adaptive remeshing strategies. It is shown that correct mesh refinement formulations should be defined at an element level rather than a global level. To accomplish this, permissible element errors are required to be defined. This paper describes the methods to determine the permissible element errors. Two mesh refinement formulations are derived according to different accuracy definitions and are compared with the conventional mesh refinement formulation derived at the global level. Numerical examples are shown to explain the features of these mesh refinement formulations. Recommendations are made for use of these mesh refinement formulations.


Sign in / Sign up

Export Citation Format

Share Document