planar curve
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 17)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
pp. 1-12
Author(s):  
Samantha Sherman ◽  
Jonathan Hauenstein ◽  
Charles W. Wampler

Abstract Cognate linkages provide the useful property in mechanism design of having the same motion. This paper describes an approach for determining all coupler curve cognates for planar linkages with rotational joints. Although a prior compilation of six-bar cognates due to Dijksman purported to be a complete list, that analysis assumed, without proof, that cognates only arise by permuting link rotations. Our approach eliminates that assumption using arguments concerning the singular foci of the coupler curve to constrain a cognate search and then completing the analysis by solving a precision point problem. This analysis confirms that Dijksman's list for six-bars is comprehensive. As we further demonstrate on an eight-bar and a ten-bar example, the method greatly constrains the set of permutations of link rotations that can possibly lead to cognates, thereby facilitating the discovery of all cognates that arise in that manner. However, for these higher order linkages, the further step of using a precision point test to eliminate the possibility of any other cognates is still beyond our computational capabilities.


2021 ◽  
Vol 78 ◽  
pp. 101797
Author(s):  
W. Domitrz ◽  
M.C. Romero Fuster ◽  
M. Zwierzyński
Keyword(s):  

Author(s):  
Kiruba Thangam Raja ◽  
Bimal Kumar Ray

Polygonal approximation (PA) techniques have been widely applied in the field of pattern recognition, classification, shape analysis, identification, 3D reconstruction, medical imaging, digital cartography, and geographical information system. In this paper, we focus on some of the key techniques used in implementing the PA algorithms. The PA can be broadly divided into three main category, dominant point detection, threshold error method with minimum number of break points and break points approximation by error minimization. Of the above three methods, there has been always a tradeoff between the three classes and optimality, specifically the optimal algorithm works in a computation intensive way with a complexity ranges from O (N2) to O (N3).The heuristic methods approximate the curve in a speedy way, however they lack in the optimality but have linear time complexity. Here a comprehensive review on major PA techniques for digital planar curve approximation is presented.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1575
Author(s):  
Paweł Witowicz

Locally strictly convex surfaces in four-dimensional affine space are studied from a perspective of the affine structure invented by Nuño-Ballesteros and Sánchez, which is especially suitable in convex geometry. The surfaces that are embedded in locally strictly convex hyperquadrics are classified under assumptions that the second fundamental form is parallel with respect to the induced connection and the normal connection is compatible with a metric on the transversal bundle. Both connections are induced by a canonical transversal plane bundle, which is defined by certain symmetry conditions. The obtained surfaces are always products of an ellipse and a conical planar curve.


2021 ◽  
Vol 76 (2) ◽  
Author(s):  
Leonardo Alese

AbstractGiven a pair of real functions (k, f), we study the conditions they must satisfy for $$k+\lambda f$$ k + λ f to be the curvature in the arc-length of a closed planar curve for all real $$\lambda $$ λ . Several equivalent conditions are pointed out, certain periodic behaviours are shown as essential and a family of such pairs is explicitely constructed. The discrete counterpart of the problem is also studied.


2021 ◽  
pp. 1-18
Author(s):  
Samantha N. Sherman ◽  
Jonathan D. Hauenstein ◽  
Charles W. Wampler

Abstract Cognate linkages are mechanisms that share the same motion, a property that can be useful in mechanical design. This paper treats planar curve cognates, that is, planar mechanisms with rotational joints whose coupler points draw the same curve, as well as coupler cognates and timed curve cognates. The purpose of this article is to develop a straightforward method based solely on kinematic equations to construct cognates. The approach computes cognates that arise from permuting link rotations and is shown to reproduce all of the known results for cognates of four-bar and six-bar linkages. This approach is then used to construct a cognate of an eight-bar and a ten-bar linkage.


Author(s):  
Alessandro Gambini ◽  
Giorgio Nicoletti ◽  
Daniele Ritelli

AbstractTaking the hint from usual parametrization of circle and hyperbola, and inspired by the pathwork initiated by Cayley and Dixon for the parametrization of the “Fermat” elliptic curve $$x^3+y^3=1$$ x 3 + y 3 = 1 , we develop an axiomatic study of what we call “Keplerian maps”, that is, functions $${{\,\mathrm{{\mathbf {m}}}\,}}(\kappa )$$ m ( κ ) mapping a real interval to a planar curve, whose variable $$\kappa $$ κ measures twice the signed area swept out by the O-ray when moving from 0 to $$\kappa $$ κ . Then, given a characterization of k-curves, the images of such maps, we show how to recover the k-map of a given parametric or algebraic k-curve, by means of suitable differential problems.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Eszter Fehér ◽  
Gábor Domokos ◽  
Bernd Krauskopf

<p style='text-indent:20px;'>We are concerned with the evolution of planar, star-like curves and associated shapes under a broad class of curvature-driven geometric flows, which we refer to as the Andrews-Bloore flow. This family of flows has two parameters that control one constant and one curvature-dependent component for the velocity in the direction of the normal to the curve. The Andrews-Bloore flow includes as special cases the well known Eikonal, curve-shortening and affine shortening flows, and for positive parameter values its evolution shrinks the area enclosed by the curve to zero in finite time. A question of key interest has been how various shape descriptors of the evolving shape behave as this limit is approached. Star-like curves (which include convex curves) can be represented by a periodic scalar polar distance function <inline-formula><tex-math id="M1">\begin{document}$ r(\varphi) $\end{document}</tex-math></inline-formula> measured from a reference point, which may or may not be fixed. An important question is how the numbers and the trajectories of critical points of the distance function <inline-formula><tex-math id="M2">\begin{document}$ r(\varphi) $\end{document}</tex-math></inline-formula> and of the curvature <inline-formula><tex-math id="M3">\begin{document}$ \kappa(\varphi) $\end{document}</tex-math></inline-formula> (characterized by <inline-formula><tex-math id="M4">\begin{document}$ dr/d\varphi = 0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ d\kappa /d\varphi = 0 $\end{document}</tex-math></inline-formula>, respectively) evolve under the Andrews-Bloore flows for different choices of the parameters.</p><p style='text-indent:20px;'>We present a numerical method that is specifically designed to meet the challenge of computing accurate trajectories of the critical points of an evolving curve up to the vicinity of a limiting shape. Each curve is represented by a piecewise polynomial periodic radial distance function, as determined by a chosen mesh; different types of meshes and mesh adaptation can be chosen to ensure a good balance between accuracy and computational cost. As we demonstrate with test-case examples and two longer case studies, our method allows one to perform numerical investigations into subtle questions of planar curve evolution. More specifically — in the spirit of experimental mathematics — we provide illustrations of some known results, numerical evidence for two stated conjectures, as well as new insights and observations regarding the limits of shapes and their critical points.</p>


Sign in / Sign up

Export Citation Format

Share Document