scholarly journals Modular Galois covers associated to symplectic resolutions of singularities

Author(s):  
Eyal Markman
2021 ◽  
pp. 1-23
Author(s):  
Davide Lombardo ◽  
Elisa Lorenzo García ◽  
Christophe Ritzenthaler ◽  
Jeroen Sijsling
Keyword(s):  

2011 ◽  
Author(s):  
Pierre Dèbes ◽  
Nour Ghazi
Keyword(s):  

2007 ◽  
Vol 18 (05) ◽  
pp. 473-481
Author(s):  
BAOHUA FU

We recover the wreath product X ≔ Sym 2(ℂ2/± 1) as a transversal slice to a nilpotent orbit in 𝔰𝔭6. By using deformations of Springer resolutions, we construct a symplectic deformation of symplectic resolutions of X.


2015 ◽  
Vol 18 (1) ◽  
pp. 647-659 ◽  
Author(s):  
Jürgen Hausen ◽  
Simon Keicher

Mori dream spaces form a large example class of algebraic varieties, comprising the well-known toric varieties. We provide a first software package for the explicit treatment of Mori dream spaces and demonstrate its use by presenting basic sample computations. The software package is accompanied by a Cox ring database which delivers defining data for Cox rings and Mori dream spaces in a suitable format. As an application of the package, we determine the common Cox ring for the symplectic resolutions of a certain quotient singularity investigated by Bellamy–Schedler and Donten-Bury–Wiśniewski.


1996 ◽  
Vol 305 (1) ◽  
pp. 493-539 ◽  
Author(s):  
B. Moishezon ◽  
A. Robb ◽  
M. Teicher

1995 ◽  
Vol 120 (1) ◽  
pp. 555-578 ◽  
Author(s):  
Florian Pop
Keyword(s):  

Author(s):  
Joachim König ◽  
François Legrand

We provide evidence for this conclusion: given a finite Galois cover $f:X\rightarrow \mathbb{P}_{\mathbb{Q}}^{1}$ of group $G$ , almost all (in a density sense) realizations of $G$ over $\mathbb{Q}$ do not occur as specializations of $f$ . We show that this holds if the number of branch points of $f$ is sufficiently large, under the abc-conjecture and, possibly, the lower bound predicted by the Malle conjecture for the number of Galois extensions of $\mathbb{Q}$ of given group and bounded discriminant. This widely extends a result of Granville on the lack of $\mathbb{Q}$ -rational points on quadratic twists of hyperelliptic curves over $\mathbb{Q}$ with large genus, under the abc-conjecture (a diophantine reformulation of the case $G=\mathbb{Z}/2\mathbb{Z}$ of our result). As a further evidence, we exhibit a few finite groups $G$ for which the above conclusion holds unconditionally for almost all covers of $\mathbb{P}_{\mathbb{Q}}^{1}$ of group $G$ . We also introduce a local–global principle for specializations of Galois covers $f:X\rightarrow \mathbb{P}_{\mathbb{Q}}^{1}$ and show that it often fails if $f$ has abelian Galois group and sufficiently many branch points, under the abc-conjecture. On the one hand, such a local–global conclusion underscores the ‘smallness’ of the specialization set of a Galois cover of $\mathbb{P}_{\mathbb{Q}}^{1}$ . On the other hand, it allows to generate conditionally ‘many’ curves over $\mathbb{Q}$ failing the Hasse principle, thus generalizing a recent result of Clark and Watson devoted to the hyperelliptic case.


2020 ◽  
Vol 2020 (764) ◽  
pp. 287-304
Author(s):  
Hyungryul Baik ◽  
Farbod Shokrieh ◽  
Chenxi Wu

AbstractWe prove a generalized version of Kazhdan’s theorem for canonical forms on Riemann surfaces. In the classical version, one starts with an ascending sequence {\{S_{n}\rightarrow S\}} of finite Galois covers of a hyperbolic Riemann surface S, converging to the universal cover. The theorem states that the sequence of forms on S inherited from the canonical forms on {S_{n}}’s converges uniformly to (a multiple of) the hyperbolic form. We prove a generalized version of this theorem, where the universal cover is replaced with any infinite Galois cover. Along the way, we also prove a Gauss–Bonnet-type theorem in the context of arbitrary infinite Galois covers.


1988 ◽  
Vol 110 (5) ◽  
pp. 849 ◽  
Author(s):  
David Harbater

Sign in / Sign up

Export Citation Format

Share Document