scholarly journals Generalized q-Schur algebras and modular representation theory of finite groups with split (BN)-pairs

1999 ◽  
Vol 1999 (511) ◽  
pp. 145-191 ◽  
Author(s):  
Richard Dipper ◽  
Jochen Gruber

Abstract We introduce a generalized version of a q-Schur algebra (of parabolic type) for arbitrary Hecke algebras over extended Weyl groups. We describe how the decomposition matrix of a finite group with split BN-pair, with respect to a non-describing prime, can be partially described by the decomposition matrices of suitably chosen q-Schur algebras. We show that the investigated structures occur naturally in finite groups of Lie type.

1991 ◽  
Vol 43 (4) ◽  
pp. 792-813 ◽  
Author(s):  
G. O. Michler ◽  
J. B. Olsson

In his fundamental paper [1] J. L. Alperin introduced the idea of a weight in modular representation theory of finite groups G. Let p be a prime. A p-subgroup R is called a radical subgroup of G if R = Op(NG(R)). An irreducible character φ of NG(R) is called a weight character if φ is trivial on R and belongs to a p-block of defect zero of NG(R)/R. The G-conjugacy class of the pair (R, φ) is a weight of G. Let b be the p-block of NG(R) containing φ, and let B be p-block of G. A weight (R, φ) is a B-weight for the block B of G if B = bG, which means that B and b correspond under the Brauer homomorphism. Alperin's conjecture on weights asserts that the number l*(B) of B-weights of a p-block B of a finite group G equals the number l(B) of modular characters of B.


2001 ◽  
Vol 64 (2) ◽  
pp. 472-488 ◽  
Author(s):  
D. NOTBOHM

For a prime p, a homology decomposition of the classifying space BG of a finite group G consist of a functor F : D → spaces from a small category into the category of spaces and a map hocolim F → BG from the homotopy colimit to BG that induces an isomorphism in mod-p homology. Associated to a modular representation G → Gl(n; [ ]p), a family of subgroups is constructed that is closed under conjugation, which gives rise to three different homology decompositions, the so-called subgroup, centralizer and normalizer decompositions. For an action of G on an [ ]p-vector space V, this collection consists of all subgroups of G with nontrivial p-Sylow subgroup which fix nontrivial (proper) subspaces of V pointwise. These decomposition formulas connect the modular representation theory of G with the homotopy theory of BG.


1988 ◽  
Vol 109 ◽  
pp. 109-116 ◽  
Author(s):  
T.R. Berger ◽  
R. Knörr

R. Brauer not only laid the foundations of modular representation theory of finite groups, he also raised a number of questions and made conjectures (see [1], [2] for instance) which since then have attracted the interest of many people working in the field and continue to guide the research efforts to a good extent. One of these is known as the “Height zero conjecture”. It may be stated as follows: CONJECTURE. Let B be a p-block of the finite group G. All irreducible ordinary characters of G belonging to B are of height 0 if and only if a defect group of B is abelian.


2016 ◽  
Vol 19 (1) ◽  
pp. 1-24
Author(s):  
Morton E. Harris

AbstractIn the modular representation theory of finite groups, we show that the standard derivation of the Green correspondence lifts to a derivation of a Green correspondence for twisted group algebras (Theorem 1.3). Then, from these results we derive a lift of the Puig correspondences for twisted group algebras (Theorem 1.6).Clearly twisted group algebras arise naturally in finite group modular representation theory. We conclude with some suggestions for applications in this mathematical area.


1981 ◽  
Vol 22 (2) ◽  
pp. 151-154 ◽  
Author(s):  
Shigeo Koshitani

Let G be a finite group and p a prime number. About five years ago I. M. Isaacs and S. D. Smith [5] gave several character-theoretic characterizations of finite p-solvable groups with p-length 1. Indeed, they proved that if P is a Sylow p-subgroup of G then the next four conditions (l)–(4) are equivalent:(1) G is p-solvable of p-length 1.(2) Every irreducible complex representation in the principal p-block of G restricts irreducibly to NG(P).(3) Every irreducible complex representation of degree prime to p in the principal p-block of G restricts irreducibly to NG(P).(4) Every irreducible modular representation in the principal p-block of G restricts irreducibly to NG(P).


2012 ◽  
Vol 15 (5) ◽  
Author(s):  
R. Lawther

Abstract.Given either a simple algebraic group or a finite group of Lie type, of rank at least 2, and a maximal parabolic subgroup, we determine which non-trivial unipotent classes have the property that their intersection with the parabolic subgroup is contained within its unipotent radical. Such classes are rare; listing them provides a basis for inductive arguments.


2005 ◽  
Vol 12 (04) ◽  
pp. 677-690 ◽  
Author(s):  
M. S. Lucido ◽  
M. R. Pournaki

In this paper, we study the probability that a randomly chosen element in a finite group has a square root, in particular the simple groups of Lie type of rank 1, the sporadic finite simple groups and the alternating groups.


2008 ◽  
Vol 15 (03) ◽  
pp. 449-456 ◽  
Author(s):  
A. R. Moghaddamfar ◽  
A. R. Zokayi

The degree pattern of a finite group G is introduced in [10] and it is proved that the following simple groups are uniquely determined by their degree patterns and orders: all sporadic simple groups, alternating groups Ap (p ≥ 5 is a twin prime) and some simple groups of Lie type. In this paper, we continue this investigation. In particular, we show that the automorphism groups of sporadic simple groups (except Aut (J2) and Aut (McL)), all simple C22-groups, the alternating groups Ap, Ap+1, Ap+2 and the symmetric groups Sp, Sp+1, where p is a prime, are also uniquely determined by their degree patterns and orders.


2014 ◽  
Vol 17 (6) ◽  
Author(s):  
Morton E. Harris

AbstractIn [J. Pure Appl. Algebra 2 (1972), 371–393, Theorem 4.1], J. A. Green shows that the Green Correspondence in Finite Group Modular Representation Theory is a consequence of an equivalence between two quotient categories of appropriate subcategories in the Green Correspondence context. In [Adv. Math. 104 (1994), 297–314, Theorems 3.5, 3.6 and 3.7], M. Auslander and M. Kleiner prove a similar result. M. Linckelmann suggested that the quotient categories in these results are the same. Utilizing extensions of [The Representation Theory of Finite Groups, North-Holland, Amsterdam, 1982, III, Theorem 7.8] or [Representations of Finite Groups, Academic Press, San Diego, 1988, Chapter 5, Corollary 3.11], we extend these results to blocks of finite groups. In order to state and prove our results and to remain relatively self-contained, we follow the procedures of [Adv. Math. 104 (1994), 297–314] in the Green Correspondent context. This is presented in Section 1. In Section 2 we present our main results. In Section 3 we give a very short proof of a theorem of H. Fitting for 𝒪-algebras that is essential in the proof of basic results of J. A. Green, [J. Pure Appl. Algebra 2 (1972), 371–393, Lemma 3.9 and Theorem 3.10].


2020 ◽  
Vol 18 (1) ◽  
pp. 1742-1747
Author(s):  
Jianjun Liu ◽  
Mengling Jiang ◽  
Guiyun Chen

Abstract A subgroup H of a finite group G is called weakly pronormal in G if there exists a subgroup K of G such that G = H K G=HK and H ∩ K H\cap K is pronormal in G. In this paper, we investigate the structure of the finite groups in which some subgroups are weakly pronormal. Our results improve and generalize many known results.


Sign in / Sign up

Export Citation Format

Share Document