Local limit theorems for generalized scheme of allocation of particles into ordered cells

2021 ◽  
Vol 31 (4) ◽  
pp. 293-307
Author(s):  
Aleksandr N. Timashev

Abstract A generalized scheme of allocation of n particles into ordered cells (components). Some statements containing sufficient conditions for the weak convergence of the number of components with given cardinality and of the total number of components to the negative binomial distribution as n → ∞ are presented as hypotheses. Examples supporting the validity of these statements in particular cases are considered. For some examples we prove local limit theorems for the total number of components which partially generalize known results on the convergence of this distribution to the normal law.

Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 880
Author(s):  
Igoris Belovas

In this research, we continue studying limit theorems for combinatorial numbers satisfying a class of triangular arrays. Using the general results of Hwang and Bender, we obtain a constructive proof of the central limit theorem, specifying the rate of convergence to the limiting (normal) distribution, as well as a new proof of the local limit theorem for the numbers of the tribonacci triangle.


2020 ◽  
Vol 30 (4) ◽  
pp. 215-241
Author(s):  
Gavriil A. Bakay ◽  
Aleksandr V. Shklyaev

AbstractLet (ξ(i), η(i)) ∈ ℝd+1, 1 ≤ i < ∞, be independent identically distributed random vectors, η(i) be nonnegative random variables, the vector (ξ(1), η(1)) satisfy the Cramer condition. On the base of renewal process, NT = max{k : η(1) + … + η(k) ≤ T} we define the generalized renewal process ZT = $\begin{array}{} \sum_{i=1}^{N_T} \end{array}$ξ(i). Put IΔT(x) = {y ∈ ℝd : xj ≤ yj < xj + ΔT, j = 1, …, d}. We find asymptotic formulas for the probabilities P(ZT ∈ IΔT(x)) as ΔT → 0 and P(ZT = x) in non-lattice and arithmetic cases, respectively, in a wide range of x values, including normal, moderate, and large deviations. The analogous results were obtained for a process with delay in which the distribution of (ξ(1), η(1)) differs from the distribution on the other steps. Using these results, we prove local limit theorems for processes with regeneration and for additive functionals of finite Markov chains, including normal, moderate, and large deviations.


Author(s):  
Martina Dal Borgo ◽  
Pierre-Loïc Méliot ◽  
Ashkan Nikeghbali

Sign in / Sign up

Export Citation Format

Share Document