Zero-Sequence Current Control of Modular Active Power Filter for High Power Three-Phase Three-Wire Electrical Networks

ENERGYO ◽  
2018 ◽  
Author(s):  
Benhabib Choukri ◽  
Poure Philippe ◽  
Saadate Shahrokh
Author(s):  
Benhabib Choukri ◽  
Poure Philippe ◽  
Saadate Shahrokh

Since the development of the first control strategy for the active power filters (APF) introduced by H. Akagi [H. Akagi, Y. Kanazawa,A. Nabae, Generalized theory of the instantaneous reactive power in three-phase circuits, in: Proceedings of International Power Electronics Conference, Tokyo, Japan (1983) 1375–1386.], many efforts have been concentrated to improve their performances. However, when electrical networks supplies high current non-linear loads, a single inverter-based APF has limited power capability. In this paper, we studied parallel operation achieving high power level. More particularly, we examined a modular APF based on two three-phase inverters. This structure allows zero-sequence current circulating through the inverters, as demonstrated by using averaged modelling of the APF. To solve this problem and based on previous averaged model, we proposed a new optimal control strategy, suppressing the zero-sequence circulating current. Simulation results validate the proposed control.


Sign in / Sign up

Export Citation Format

Share Document