Determination of an Optimal Operating Schedule for Thermal Units with an Energy Storage System

ENERGYO ◽  
2018 ◽  
Author(s):  
Tomonobu Senjyu ◽  
Shantanu Chakraborty ◽  
Ahmed Yousuf Saber ◽  
Atsushi Yona ◽  
Toshihisa Funabashi
Author(s):  
Tomonobu Senjyu ◽  
Shantanu Chakraborty ◽  
Ahmed Yousuf Saber ◽  
Atsushi Yona ◽  
Toshihisa Funabashi

This paper presents a determination methodology for finding optimal operation schedules of thermal units (namely unit commitment) integrated with an energy storage system (ESS) to minimize total operating costs. A generic ESS formulation along with a method for solving unit commitment (UC) of thermal units with ESS is proposed to serve this purpose. The problem of unit commitment with an ESS is solved using the Priority List method. Intelligent Genetic algorithm (GA) is included in the algorithm for generating new and potential solutions. The proposed method consists of two steps. The first step is to determine the schedule of ESS and the schedule of thermal units. The second step is to dispatch the hourly output of thermal units and the ESS which comply a minimized total production cost. The proposed method is applied to a power system with ten thermal units and a large ESS. The presented simulation results show that the schedule of thermal units with an ESS of a particular life cycle, achieved by the proposed method, minimizes the operating cost. The discussion regarding the determination of schedule thermal units (TU) along with the integrated ESS may interest many types of ESS due to their generalized formulations.


2021 ◽  
Vol 13 (6) ◽  
pp. 3576
Author(s):  
Cheng-Ta Tsai ◽  
Yu-Shan Cheng ◽  
Kuen-Huei Lin ◽  
Chun-Lung Chen

Due to the increased development of the smart grid, it is becoming crucial to have an efficient energy management system for a time-of-use (TOU) rate industrial user in Taiwan. In this paper, an extension of the direct search method (DSM) is developed to deal with the operating schedule of a TOU rate industrial user under the demand bidding mechanism of Taipower. To maximize the total incentive obtained from the Taiwan Power Company (TPC, namely Taipower), several operational strategies using a battery energy storage system (BESS) are evaluated in the study to perform peak shaving and realize energy conservation. The effectiveness of the proposed DSM algorithm is validated with the TOU rate industrial user of the TPC. Numerical experiments are carried out to provide a favorable indication of whether to invest in a BESS for the renewable energy-based TOU rate industrial user in order to execute the demand bidding program (DBP).


Sign in / Sign up

Export Citation Format

Share Document