An economic and low-carbon day-ahead Pareto-optimal scheduling for wind farm integrated power systems with demand response

ENERGYO ◽  
2018 ◽  
Author(s):  
Rui MA ◽  
Kai LI ◽  
Xuan LI ◽  
Zeyu QIN
2019 ◽  
Vol 13 (4) ◽  
pp. 519-529 ◽  
Author(s):  
Hamidreza Hamidpour ◽  
Jamshid Aghaei ◽  
Shahab Dehghan ◽  
Sasan Pirouzi ◽  
Taher Niknam

Author(s):  
Jianqiang Hu ◽  
Jinde Cao

Demand response flexible loads can provide fast regulation and ancillary services as reserve capacity in power systems. This paper proposes a joint optimization dispatch control strategy for source-load system with stochastic renewable power injection and flexible thermostatically controlled loads (TCLs) and plug-in electric vehicles (PEVs). Specifically, the optimization model is characterized by a chance constraint look-ahead programming to maximal the social welfare of both units and load agents. By solving the chance constraint optimization with sample average approximation (SAA) method, the optimal power scheduling for units and TCL/PEV agents can be obtained. Secondly, two demand response control algorithms for TCLs and PEVs are proposed respectively based on the aggregate control models of the load agents. The TCLs are controlled by its temperature setpoints and PEVs are controlled by its charging power such that the DR control objective can be fulfilled. The effectiveness of the proposed dispatch and control algorithm has been demonstrated by the simulation studies on a modified IEEE 39 bus system with a wind farm, a photovoltaic power station, two TCL agents and two PEV agents.


Author(s):  
Mojtaba Najafi ◽  
Samaneh Ahmadi ◽  
Masoud Dashtdar

Abstract Determining the optimal reserve in power systems is closely related to uncertainties in power generation and risks of outage of supply to consumers. Distributed generation sources such as wind farms are usual reasons for uncertainties in MW production. This uncertainty can be alleviated by providing enough reserve in which demand response (DR) programs can play role of resources for reserve. In an electricity market structure, the mentioned points are usually handled by Independent System Operator (ISO) in energy and reserve markets. This paper deals with the problem of reliability-based reserve management. In the mentioned problem, the DR program in the form of interruptible loads is also considered. A new method is proposed in which ISO settle energy and reserve markets simultaneously while employing the DR in the first stage. In addition, consumers’ requirements of reliability are included by assuming that they have possibility to offer their desired levels of reliability to the ISO. The amount of reserve obtained from market settlement is adjusted based on the different reliability requirements of the consumers and different scenarios of the wind farm operation, in the second stage of the proposed method. Also the cost of the reserve adjustment is fairly allocated to producers and consumers. The proposed method applies stochastic programming formulation and its validity is assessed by the GAMS software. Simulation results show that how amount and cost of reserve could be adjusted to cover power balance, cost of power production and load interruption and required reliability of consumers.


Sign in / Sign up

Export Citation Format

Share Document